
SARS-CoV-2 Through the Lens of Computational Biology

How bioinformatics is playing a key role in the study
of the virus and its origins

In December 2019, the Chinese Center for Disease Control reported several cases of severe pneumonia that
resisted usual treatments in the city of Wuhan. This announcement marked the beginning of the COVID-19
pandemic, which caused more than 80 million infection cases and 1.7 million deaths worldwide in 2020 alone and
is still raging. The pandemic has given rise to global public health responses and international research efforts
of unprecedented scope and speed. This scientific mobilization has yielded remarkable results, enabling a great
deal of knowledge accumulation in just a few months: from the identification of the virus and its main proteins
to the analysis of its origin and mechanisms. This basic biological knowledge is mandatory for medical advances.

In this document, one year after the beginning of the spread of the disease, we wish to shed particular light
on the contribution of bioinformatics in all this work. This discipline, at the crossroads of computer sciences,
mathematics, biology, and physics, has taken on inestimable importance in modern biology and medicine. It
provides computational models, algorithms, software, and guidelines to help the scientific community handle
biological data and accelerate research. The discovery and study of the SARS-CoV-2 coronavirus is an emblematic
example of these contributions. Bioinformatics methods have been at the heart of several essential milestones:
sequencing the virus genome, analyzing its origin and evolutionary dynamics, modeling interacting biological
entities at the structural and network scales, and studying host genetic susceptibility. For several of these topics,
research on SARS-CoV-2 could benefit from a wide range of off-the-shelf software packages that rely on well-
established algorithms developed by the bioinformatics community over the years. For other topics, the analysis
of SARS-CoV-2 pushes the limits of knowledge and invites the community to develop new computational models
and methods. This work, as a whole, has made it possible to elucidate the nature and the functioning of the
novel pathogen. It has contributed to the fight against COVID-19, even if much remains to be done to fully
understand the disease and control the epidemic.

The document is organized as follows. In Section 1, we narrate the story of the discovery of the virus from

its sequencing in the early stages of the pandemic in China to the development of mass testing and low-cost

sequencing globally. In section 2, we explain the pivotal role of modeling approaches in understanding how the

virus functions at the molecular level. Finally, in Section 3, we come back to the emergence of SARS-CoV-2, its

origin, and its evolution in time and space.
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1 Tracking the virus’s emergence and progression

1.1 Discovery of a new pathogen

Identifying the causative agent of an unknown infection usually requires the sequencing of its genetic
material, which means determining the sequence of nucleotides (As, Ts, Cs, and Gs) that make up its
genome. Since the mid-2010s, high throughput sequencing coupled with bioinformatics has made it
possible to characterize and analyze an emergent virus’s genome in a few days for a few hundred euros.
Thus, from December 2019 to January 2020, several hospitals in Wuhan confronted with the disease
independently embarked on the sequencing of the unknown pathogen [6, 7, 8, 9, 10]. They all followed
approximately the same protocol.

Sequencing of the genetic material. The starting point consists of collecting lung fluids from
patients, and then extracting the genetic molecules contained in the sample. The result is a pulmonary
microbiome that is ready for sequencing. Genomic sequences cannot be generated outright because
the sequencing method can only generate short stretches of sequences, measuring approximately 200
nucleotides at a time. So, after the sequencing step, the raw data is a soup of hundreds of thousands of
short nucleic sequences, called reads, which are intended to randomly cover the initial genomes.

Data filtering. Making sense of the raw reads to obtain the genome of interest requires a series of
computational treatments based on string algorithms capable of processing big data efficiently. The first
problem is that the sequencing data originates from all microorganisms present in the clinical sample,
including possible contamination from the human host. The strategy to overcome this obstacle is to
filter out reads from the host background or any other known species. This process is performed by
mining large genome databases comprising a full range of known microbes (viruses, bacteria, fungi,
and parasites) as well as the human genome. For this, the bioinformatics community has developed
genomic search engines, such as Blast [2], that resemble Google for DNA. These tools compute sequence
alignments to distinguish reads that are similar to sequences present in the database from other data
(see Box 1). This line of research dates back to the end of the 1990s approximately. The most recent
methods have been specifically designed over the last ten years to handle high-throughput sequencing
reads. They are able to process gigabytes of DNA sequences in a few minutes. The algorithmic core
relies on advanced concepts from information theory, such as compression, hash functions, index data
structures [3, 4]. These advances have made it possible to isolate the reads originating from the novel
virus from the other reads. This isolated portion typically represents less than 1% of the initial data.

Genome assembly. Once the reads of interest have been isolated, the final step is to assemble them,
reconstructing the genome’s sequence from the puzzle of reads. De novo assembly of a new genome
is like assembling a furniture kit for which the instruction guide has been lost. Additional sources of
complexity are that there are hundreds of thousands of small pieces, many of which look alike since they
are all written in the same four-letter alphabet, A, C, G, T, and some of which contain erroneous letters
due to sequencing errors. De novo assembly is still a major challenge for large genomes, measuring up
to billions of nucleotides. But software programs developed in the last decade can now easily solve the
assembly puzzle for simple genomes, such as viral ones. State of the art methods rely on De Bruijn
graphs [5], for which we give a brief introduction in Box 2. The assembly results in the reconstruction of
the virus’s genomic sequence: in the case of SARS-CoV-2, it is a single strand RNA sequence composed of
approximately 30,000 nucleotides. The first reference sequence was made publicly available on January
12, 2020. All in all, it took less than two weeks to obtain a genome of what is now known as the
SARS-CoV-2 virus.

Internet resources

• The first published reference genome is available on the NCBI website with identifier NC 045512:
https://www.ncbi.nlm.nih.gov/nuccore/NC 045512.

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
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BOX 1. Alignment of biological sequences

Sequence alignment serves multiple purposes: filtering out the sequencing data, finding genes on the
genome, identifying variants between strains, and building multiple sequence alignments, for example.

Alignment is the algorithmic process of comparing sequences to detect similarities and differences
[1]. Differences correspond to mutations or sequencing errors: replacement of one nucleotide by
another, insertion of an extra nucleotide, or deletion of a nucleotide. When comparing two sequences,
the number of all possible alignments is exponential because of the combinatorics of insertions and
deletions. Therefore, the naive approach of computing all possible alignments is infeasible in practice.
This problem can be best solved as an optimization problem using dynamic programming, a common
algorithmic paradigm. It works by dividing the problem into smaller subproblems and is able to
compute the optimal alignment without resorting to approximations.

Pairwise alignments can also be computed between a single sequence and a database containing
millions of genomes. This is done to remove reads from the human genome (3 billion nucleotides)
and other known respiratory parasites when sequencing pulmonary samples. For such large-scale
comparisons, computing exact dynamic programming alignments between the query sequence and
each of the database sequences would require months of calculations. To overcome this difficulty,
bioinformatics researchers have proposed efficient heuristics able to process gigabytes of DNA data
with a desktop computer. The search is performed by organizing the database into an index structure
that lists all words of a given length, called k-mers, and allows direct access to those words in the
genomes. Examples of such indexes are hashtables, or compressed tree-like data structures such
as suffix arrays and FM-index. After rapidly identifying the few sequences that share such small
similarities with the query sequence, more precise and longer alignments can be performed with the
classical dynamic programming paradigm. This kind of approach makes it possible to identify a
needle in a haystack: similarities as short as ten nucleotides between the sequence of interest and the
database. With big data such as this, short matches can occur by chance with no biological meaning.
It is thus crucial to evaluate the statistical significance of the alignments found, which is done with
E-value calculations that measure the number of alignments that would be expected due to chance
alone. For example, it is possible to find local similarities between the SARS-CoV-2 spike protein gene
and organisms in the tree of life as diverse as the two model bacteria Escherichia coli and Bacillus
subtilis, the maize plant, the zebrafish, or even an unrelated virus, such as HIV. Those matches all
have E-values greater than 0.01, which is not significant, while alignment between the SARS-CoV-2
spike gene and other coronavirus spike genes reaches an E-value as low as 0.
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BOX 2. De Bruijn graphs

GCATTATC

AGCATTGT

TTATCGGC

GCAT CATT ATTA TTAT TATC

GCAT CATT

ATTA TTAT TATC

AGCA

ATCG TCGG ATTA

ATTG TTGT

Set of sequencing reads, with decomposition into k-mers (k=4)

De Bruijn graph built from the set of all 4-mers

AGCA GCAT CATT ATTG TTGT

AGCATTATCGGCAssembled sequence : 

TTAT TATC ATCG TCGG CGGC

The most commonly employed method to reconstruct genomes from sequencing reads relies on de
Bruijn graphs. The name comes from the mathematician Nicolaas de Bruijn, who introduced these
data structures in the 1940s as a combinatorial object. De Bruijn graphs made their entry into
bioinformatics 60 years later, with the advent of high throughput sequencing. Indeed, the amount
of sequencing data routinely generated by an experiment (gigabytes or even terabytes) made the
existing software obsolete and necessitated a new paradigm for genome assembly. When applied to
the assembly problem, the principle of De Bruijn graphs is as follows. Reads are split into strings of
a particular length k, called k-mers, which are shorter than entire reads. In the above example, we
have k = 4. The graph for the set of reads is then constructed by taking all k-mers as vertices and
adding edges between vertices with an overlap length of exactly k− 1. The original genome sequence
is obtained as a path in this graph.

The main advantage of De Bruijn graphs is that memory usage scales with the number of unique
k-mers in the set of reads, rather than the number of reads. Moreover, edges are implicit since they
are deduced from the two adjacent vertices. The memory footprint can further be decreased using
probabilistic filters, such as the Bloom filters. In real life, the value of k ranges between 20 and 130,
depending on the size of the genome. The method is also adapted to handle experimental sequencing
data: the existence of erroneous reads due to sequencing errors, the presence of repeated regions in
the genome, or the presence of unsequenced regions.
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Further reading on sequence alignment and assembly

[1] Sequence Alignment. S.F. Altschul and M. Pop, In: Handbook of Discrete and Combinatorial Mathematics
(2017). https://europepmc.org/article/NBK/nbk464187

[2] The BLAST Sequence Analysis Tool. T. Madden, The NCBI Handbook (2013). https://www.ncbi.nlm.n

ih.gov/books/NBK153387

[3] Genome-Scale Algorithm Design : Biological Sequence Analysis in the Era of High-Throughput Sequencing.
V. Makinen, D. Belazzougui, F. Cunial and A.I. Tomescu (2015)

[4] Alignment of Next-Generation Sequencing Reads. K. Reinert, B. Langmead, D. Weese and D.J. Evers,
Annual Review of Genomics and Human Genetics 16:133-151 (2015) doi.org/10.1146/annurev-genom-09

0413-025358

[5] How to apply de Bruijn graphs to genome assembly. Ph. Compeau, P. Pevzner & G. Tesler. Nature
Biotechnology 29 (2011)

Bibliographical sources on sequence alignment and assembly

[6] A new coronavirus associated with human respiratory disease in China. F. Wu et al. Nature, 579:265-269
(2020). doi:10.1038/s41586-020-2008-3

[7] Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. LL Ren et
al. Chinese Medical Journal 133(9):1015-1024 (2020). doi:10.1097/CM9.0000000000000722

[8] Genomic Diversity of Severe Acute Respiratory Syndrome-Coronavirus 2 in Patients With Coronavirus
Disease 2019. Z. Shen et al. Clinical infectious diseases, 71,15, 713-720 (2020). doi:10.1093/cid/ciaa203

[9] RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases
in 2019 Wuhan outbreak. L. Chen et al. Emerging microbes & infections, 9,1 313-319 (2020). doi:

10.1080/22221751.2020.1725399

[10] Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Huang C, Wang Y, Li
X, et al. Lancet 395:497-506 (2020) doi:10.1016/S0140-6736(20)30183-5

1.2 First hints on the biology of SARS-CoV-2

Knowing the genome sequence is a major milestone in the understanding of a disease. In the first
place, it opens the way to phylogenetic analysis of the virus by identifying closely related viruses sharing
evolutionary relationships. Indeed, large-scale sequence comparison with viral databases revealed that
the newly sequenced genome is a novel betacoronavirus, one of four genera of coronaviruses. It shows
more than 85% similarity to several bat-derived coronaviruses, while being more distant from other known
human betacoronaviruses. It has 79% similarity with SARS-CoV, responsible for the 2003 outbreak of
SARS in Asia, and 50% similarity with the Middle East respiratory syndrome coronavirus, MERS-CoV.
The availability of all these related virus genomes makes it possible to formulate preliminary hypotheses
on the origin of the virus, which we detail in Section 3. It also allows the characterization of proteins
encoded by the genome that govern the functioning of the virus, which we detail below.

A quick reminder on the viral cycle. Viruses cannot function by themselves, and their survival is
dependent on host cells. For this, they hijack the host’s cell machinery to make copies of themselves and
infect other cells. This general life cycle relies on five steps:

– the attachment: the virus recognizes and attaches to receptor proteins on the surface of the human
cells,

– the entry of the virus in the host cell, with the injection of its genetic material,

https://europepmc.org/article/NBK/nbk464187
https://www.ncbi.nlm.nih.gov/books/NBK153387
https://www.ncbi.nlm.nih.gov/books/NBK153387
doi.org/10.1146/annurev-genom-090413-025358
doi.org/10.1146/annurev-genom-090413-025358
doi: 10.1038/s41586-020-2008-3
doi: 10.1097/CM9.0000000000000722
doi:10.1093/cid/ciaa203
doi:10.1080/22221751.2020.1725399
doi:10.1080/22221751.2020.1725399
doi:10.1016/S0140-6736(20)30183-5
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– the replication of the virus in the infected cell: during this stage, the virus synthesizes its proteins
with the help of the cell machinery of its host,

– the assembly of those proteins to produce new virions,

– the release of newly formed virions out of the host cell, causing the cell to burst. The new viral
particles are ready to infect other cells to repeat the same cycle.

Each of those steps involves dedicated proteins that take part in the biology of the virus and are
potential therapeutic targets. So it is crucial to analyze the genome of the virus in order to identify
genes coding for those proteins.

Comparative genomics. One basic approach to gene finding is homology. In our case, this principle is
applied to compare the newly sequenced genome to other betacoronaviruses for which a genome analysis
has already been performed. A significant degree of similarity between two genomes serves as strong
evidence to infer that the sequences share a common evolutionary history, and that functional elements
found in one sequence should be present in the other sequence with minor changes [11, 12]. This analysis
makes it possible to transfer the accumulated knowledge about the genomes of known related viruses
to the novel coronavirus. From a computational point of view, genome comparison is performed, once
again, using alignment algorithms (see Box 1). In the case of SARS-CoV-2, this search revealed that the
new genome contains 27 proteins that are conserved across betacoronaviruses, most of them being found
in all coronaviruses. The amino-acid sequences of the proteins are derived from the genomic sequences
by in silico translation with the genetic code. Among them, one can find four structural proteins that
make up the viral particle and are required for the virus to infect cells: the protein spike S that mediates
virus entry into the host cell – as we shall see in detail in Section 2.1, the small envelope protein E that
gives the virion its shape, the nucleocapsid protein N which binds the viral RNA and also interacts with
a number of cellular components, and the membrane protein M involved in the assembly and release
steps. While being very similar to proteins found in other betacoronaviruses, these structural protein
sequences show several local differences that are specific to SARS-CoV-2 and are likely to be one of
the causes of the functional and pathogenic divergence of this virus. To measure the potential impact
of these differences, one can look at motifs present in the protein’s amino-acid sequence. Such motifs
are regions of the protein that are more specifically involved in the function and the structure of the
molecule, and that show a higher degree of conservation between species. Modeling motifs is another
way to capture homology. This approach relies on probabilistic models based on Hidden Markov Models,
which encapsulate multiple sequence alignments to assign probabilities about the presence of each amino
acid in each position of the alignment [13, 16]. Box 3 shows the genome organization of SARS-CoV-2,
compared to SARS-CoV and MERS-CoV, and also the Receptor Binding Domain of the protein spike S.

Despite all this information and all these advances, the SARS-CoV-2 genome has not told us all its
secrets. For example, homology search with more distant coronaviruses shows the unexpected presence
of putative small genes, known as overlapping genes, that are hidden behind other genes, meaning that
the same portion of the genome can code for distinct proteins [17]. The function of these genes is still
an open question.

Internet resources

• The UCSC SARS-CoV-2 Genome Browser: https://genome.ucsc.edu/covid19.html. This portal is
developed by UC Santa Cruz Genomics Institute and provides user-friendly tools to visualize the genome,
along with its genes and mutations.

• The Ensembl SARS-CoV-2 assembly and gene annotation resource: https://covid-19.ensembl.org/Sar

s cov 2/Info/Annotation. On this site, one can find the reference genome, genes, and protein annotations
with motifs.

https://genome.ucsc.edu/covid19.html
https://covid-19.ensembl.org/Sars_cov_2/Info/Annotation
https://covid-19.ensembl.org/Sars_cov_2/Info/Annotation


7

�

�

�

�

BOX 3. Comparative genomics

(A) Genome organization of SARS-CoV-2

SARS-CoV

SARS-CoV-2

MERS-CoV

(B) Example of motif: the Receptor Binding Domain of the protein spike S

Bat Cov HKU3  -VYAWERTKISDCVADYTVLYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRSSEVR  
Bat Cov         -VYAWERTKISDCVADYTVLYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRSSEVR
Bat SARS-CoV  -VYAWERTKISDCVADYTVLYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRSSEVR
SARS-CoV-2   SVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVR
SARS-CoV      SVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVR

  

Bat Cov HKU3  QVAPGETGVIADYNYKLPDDFTGCVIAWNTAKHDTG-----NYYYRSHRKTKLKPFERDL
Bat Cov         QVAPGETGVIADYNYKLPDDFTGCVIAWNTAQQDQG-----QYYYRSYRKEKLKPFERDL
Bat SARS-CoV  QVAPGETGVIADYNYKLPDDFTGCVIAWNTAKQDQG-----QYYYRSHRKTKLKPFERDL
SARS-CoV-2   QIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI
SARS-CoV      QIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDI

           

Bat Cov HKU3  SS-------------DDGNGVYTLSTYDFNPNVPVAYQATRVVVLSFELLNAPATVCG
Bat Cov         S--------------SDENGVYTLSTYDFYPSIPVEYQATRVVVLSFELLNAPATVCG
Bat SARS-CoV  S--------------SDENGVRTLSTYDFYPSVPVAYQATRVVVLSFELLNAPATVCG
SARS-CoV-2   STEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG
SARS-CoV      SNVPFSPDGKPCTP-PALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAPATVCG

From top to bottom : Bat Cov HKU3,  Bat CoV, Bat SARS CoV, SARS-CoV-2, SARS-CoV-1     S
(A) Genome organization of SARS-CoV-2. ORF1a and ORF1b contain 16 non-structural proteins
that are required for replication and transcription. The genes encoding structural proteins spike
(S), envelope (E), membrane (M), and nucleocapsid (N) are in green. The genes encoding accessory
proteins are in blue. Genomes for two other human betacoronaviruses are also displayed to illustrate
the conservation between closely related viruses: SARS-CoV and MERS coronaviruses (figure adapted
from [15]). (B) Example of motif: a closer look at the amino-acid sequence of the Receptor Binding
Domain (RBD) in protein spike S. This motif, starting at position 349 and ending at position 526
of the protein, attaches to the host receptor, initiating the infection. It is found by comparison with
other RBDs in other coronaviruses using a Hidden Markov Model. The top three sequences are from
bat betacoronaviruses (Bat Cov HKU3, Bat CoV, and Bat SARS CoV). The two last sequences are
SARS-CoV-2 and SARS-CoV. The multiple sequence alignment was built here with Muscle. The
RBD is presented in further detail in Section 2.1 and in Box 8.
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Further reading on genome and protein analysis

[11] Genome annotation: from sequence to biology. L. Stein, Nature Reviews Genetics 2, 493–503 (2001).
doi.org/10.1038/35080529

[12] Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing.
G.F. Ejigu and J. Jung, Biology 9, 295 (2020) doi.org/10.3390/biology9090295

[13] What is a hidden Markov model? S. Eddy, Nature Biotechnology 22, 1315–1316 (2004). doi.org/10.103

8/nbt1004-1315

Bibliographical sources on genome and protein analysis

[14] Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. A. Wu et
al., Cell Host Microbe 11;27(3):325-328 (2020). doi:10.1016/j.chom.2020.02.001

[15] A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons
from other pathogenic viruses. SY Fung et al. Emerging Microbes & Infections, 14;9(1):558-570 (2020).
doi:10.1080/22221751.2020.1736644

[16] Pfam: The protein families database in 2021. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G.A.
Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn, A. Bateman,
Nucleic Acids Research (2020) doi:10.1093/nar/gkaa913

[17] Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. C.W. Nelson et al.
Elife 1;9:e59633 (2020). doi:10.7554/eLife.59633

1.3 Genomics for public health strategies

In addition to its significance in biological studies, the identification of the reference genome had a direct
impact on public health policies, namely with two essential tools to track the spread of the disease:
(1) the development of massive and low-cost diagnostic testing facilities with PCR tests, and (2) the
genomic surveillance of the virus to monitor its dynamics and its mutations with large-scale sequencing
of individuals.

Widespread laboratory testing. At the onset of the outbreak, there was a need to identify people
carrying the virus, either symptomatic or not, in order to treat and isolate them to stop the spread of the
virus. The first tests were designed from the genome sequence using a well-known low-cost and robust
molecular methodology: the PCR (Polymerase Chain Reaction). PCR can indicate whether the virus’s
genome is present in a population of cells without sequencing the entirety of the genetic material. The
tested cells come from respiratory secretions, such as those collected by nasopharyngeal swab samples.
PCR tests had been previously developed for other coronaviruses, such as SARS-CoV and MERS-CoV,
among other infectious agents, so it was natural that it became the first and preferred testing method
for SARS-CoV-2 diagnosis.

The principle of PCR design is to identify small portions of the virus genome, called primers, that
can characterize this genome. In other words, it amounts to finding specific patterns that delineate a
representative region of the genome of interest. Bioinformatics guidelines and computer programs for
designing effective PCR primers have been available since the early 2000s, as explained in Box 4. The
first PCR tests for SARS-CoV-2 were designed in February 2020 from 95 genomes, mainly for research
purposes [18]. Commercial kits were available for widespread laboratory testing as of the beginning of
Summer 2020. In Europe alone, millions of tests are now performed each week.

doi.org/10.1038/35080529
doi.org/10.3390/biology9090295
doi.org/10.1038/nbt1004-1315
doi.org/10.1038/nbt1004-1315
doi: 10.1016/j.chom.2020.02.001
doi:10.1080/22221751.2020.1736644
doi: 10.1093/nar/gkaa913
doi: 10.7554/eLife.59633
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BOX 4. Bioinformatics for PCR design

(A) Principle of PCR amplification (B) Impact of mutations

targeted  viral moleculePCR primers

PCR amplification

hybridization

mutations in primer site

no PCR amplification

mutation before the first primer or
after the second primer 

mutation between the two
primer sites 

the mutation is not visible
in the PCR product 

the mutation is visible in
the PCR product

X

PCR (polymerase chain reaction) is a widely used molecular technique that allows one to rapidly
generate a high number of copies of a specific DNA or RNA strand measuring up to a few hundred
nucleotides long. In the case of an RNA sequence, such as the SARS-CoV-2 genome, the correct name
is RT-qPCR, where RT stands for reverse transcriptase, the process of moving from RNA to DNA,
and q for quantitative. PCR has multiple applications. For SARS-CoV-2, PCR is used both for test
design and tiled amplicon sequencing, as described in Subsection 1.3.

The general principle of PCR consists of repeatedly amplifying the genetic material so that the
amount of DNA can be quantified. It does not amplify the whole sequence, but only a region of
interest. For this purpose, a PCR is based on two short DNA sequences, called primers, delimiting
the region to be amplified. These primers, about 20 nucleotides long, are complementary to the target
genome and need to be specific to the sequence of interest such that only it is amplified. Thus, the
first challenge is to conceive suitable PCR primers for targeting the desired region of the SARS-CoV-2
genome without inadvertently targeting other regions, or, for that matter, other pathogens or human
genes present in a given nasal sample. This is achieved by aligning the potential primers on known
pathogens and human genomes to be sure that there is neither cross-hybridization nor similarity with
any other organism. Another challenge is designing robust primers that could attach solidly to the
genome strand. Affinity depends on the primer’s sequence composition, structure, and dynamics (see
Box 7). After all these in silico steps, the primers should be assessed on real samples showing the
effectiveness of the amplification tests in vitro.

Once the primers have been validated, their validity must be assessed against new variants of the
virus as these appear. Indeed, as the virus has spread around the world, several different lineages
have proliferated, each with its specific mutations. There is the risk that existing primers may not be
adapted to a new strain if mutations modify the site recognized by a primer, which may prevent a
proper amplification. Until July 2020, sequence alignments performed on thousands of SARS-CoV-2
genomes showed that only a few minor strains (about 1%) had pointwise mutations at the location of
the primers [19]. However, this is no longer true with the British variant B.1.1.7, which exhibits one
mutation on a primer site. In general, it is recommended that the pair of primers can resist at least
one punctual mutation. This should be taken into account to prevent loss of hybridization with the
target genome or undesired cross-hybridization. Another recommendation for designing commercial
PCR tests is to target several regions, and thus design several pairs of primers, in order to enhance
robustness. The amplified regions also differ according to the test manufacturer, meaning that some
tests can remain effective, while others become obsolete.

Beyond the RT-qPCR, which only quantifies some genetic material, we can access the content
of the amplified nucleic sequences with high-throughput sequencing. As this process is massively
automated, we can pool tens of thousands of samples and sequence them all together, making testing
much faster. In this approach, A DNA tag is added to each molecule, allowing individual samples to
be distinguished. Next, efficient bioinformatics methods (partially relying on alignments) are used to
identify the sample of origin, and to identify the sequences that have been sequenced. As far as we
know, such methods have not been used at a large scale yet.
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Towards global genomic surveillance. The availability of the SARS-CoV-2 reference genome is also
a powerful tool to establish worldwide surveillance based on large-scale sequencing, such as what has
been done in the last few years with Influenza or the seasonal flu, Ebola, and Zika. Indeed, knowing the
genome allows for simplified sequencing protocols with substantially reduced costs at an accelerated pace.
Such protocols make it possible to collect and analyze numerous SARS-CoV-2 genomes—from different
global locations and at different time points—in order to monitor the disease as closely as possible.

We have seen in Subsection 1.1 that the acquisition of the first Wuhan genomes required sequenc-
ing the whole RNA content of patients’ pulmonary samples, while the viral fraction contained in such
samples is extremely small. This produced large amounts of sequence data which necessitated complex
downstream bioinformatics analyses. Once the viral genome is known, sequencing efficiency is improved
by exclusively targeting the sequences of interest. Tiled amplicons implement such a strategy [20]. Like
previously described diagnostic tests, amplicon sequencing relies on PCR amplifications based on the
design of a series of primers present in the target genome (as detailed in Box 4). The goal here is to tile
the coronavirus genome by short regions surrounded by pairs of primers, each of them being amplified
and sequenced as a PCR product. This is a nice combinatorial problem: find a set of primer pairs
in the reference genome such that they adequately cover the whole genome and are suitable for PCR
amplification. For example, it is possible to tile the genome of SARS-CoV-2 with 137 PCR segments,
each 400 nucleotides long, or 299 PCR fragments, each 200 nucleotides long [20]. Once all amplicons
are generated, the genome assembly of the newly sequenced viral strain is also made easier by relying
on the already known SARS-CoV-2 genome sequence, which serves as a template. De novo assembly
is no longer required, and reads are simply aligned to the reference genome (see Box 1). A consensus
sequence can then be computed by selecting, at each position, the character observed in the majority of
reads aligned at the given position. Sequence variations, such as mutations, are then identified between
the newly sequenced viral strain and the Wuhan genome or between different strains co-existing in the
sample.

In December 2020, less than one year after the publication of the first Wuhan genome, more than
300,000 other SARS-CoV-2 genomes have been sequenced and assembled by various laboratories and
institutions from countries all around the world. This extensive sequencing effort allows us to understand
how the virus is evolving, to track the mutations in real time, and to identify emergent strains. One
remarkable aspect of this research is that several national and international initiatives have rapidly
developed dedicated web portals in order to store this important information and make it freely available
on the Internet. This is the spirit of open science. Generalist sequence repositories such as Genbank
hosted by the NCBI (American) or the European Nucleotide Archive hosted by the EBI (European),
which have been organizing public-domain sequence data sharing for several decades, have developed
specific databases and tools for the SARS-CoV-2 data. The GISAID Consortium also provides an
essential resource for SARS-CoV-2 genomes. The GISAID database had 339 genomes available at the
end of January 2020, and this number grew rapidly, reaching around 80,000 in August 2020 and more
than 600,000 in February 2021. Scientists can freely submit sequence data to such repositories, but
all data are carefully quality-checked and re-annotated before being publicly shared. The available
genomic sequences also come with additional information, such as the sample origin and time, molecular
sequencing protocols, patient clinical information, etc. These metadata are well-structured in databases
for efficient queries and downstream comparative analyses from this huge collection of sequences.

All this information—genomes and metadata—is used to study the propagation of the virus around
the world. It is essential to identify mutations that could impact its pathogenicity and its transmissibility.
In this perspective, the UK was able to detect the B.1.1.7 lineage early, in October 2020, and hence
monitor the emergence of what is now commonly referred to as the British variant. This was only made
possible thanks to an ambitious sequencing policy. Indeed, as of December 2020, more than 120,000
genomes have been published in the UK, compared to less than 3,000 in France in the same period.
Another variant, B.1.351, referred to as the South African variant, was also detected in October 2020
and quickly became the dominant strain in that country. Sequencing shows that in this variant, several
mutations are located in the gene coding for the spike protein S, a key protein involved in the virus’s
entry into human cells, which is consequently targeted by vaccines (as we will see in Section 2.1). This
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observation indicates that B.1.351 should be closely examined to check whether it could escape vaccine-
induced protection. This case provides critical evidence of the public health benefits of mass sequencing.
Finally, in a broader perspective, the availability of a large number of genomes is a prerequisite for
modeling the evolution of the virus. We will explain this aspect in more detail in Section 3.

Internet resources

• European Centre for Disease Prevention and Control, and more specifically data on testing for
COVID-19 by week and country: https://www.ecdc.europa.eu/en/publications-data/covi

d-19-testing

• GISAID, https://www.gisaid.org, was created in 2008 to ensure rapid sharing of data from
influenza epidemics and is now a key resource for COVID-19 genomes. It includes genetic sequences
and related clinical and epidemiological data associated with human viruses, and geographical as
well as species-specific data associated with avian and other animal viruses, to help researchers
understand how viruses evolve and spread during epidemics and pandemics.

• NCBI COVID portal: https://www.ncbi.nlm.nih.gov/sars-cov-2

• EBI COVID portal: https://www.covid19dataportal.org

Bibliographical sources on genome and protein analysis

[18] Primer design for quantitative real-time PCR for the emerging Coronavirus SARS-CoV-2. D. Li, J. Zhang
and J. Li, Theranostics 10(16):7150-7162 (2020). doi:10.7150/thno.47649

[19] Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. C.B.F.
Vogels, A.F. Brito, A.L. Wyllie et al. Nature Microbiology 5:1299–1305 (2020). doi.org/10.1038/s41564

-020-0761-6

[20] Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples.
M. Xiao et al., , M., Liu, Genome Medicine 12, 57 (2020). doi.org/10.1186/s13073-020-00751-4

2 Fighting the disease, advances in health care

The establishment of the SARS-CoV-2 genome alone is not sufficient to understand its pathogenicity
and then develop vaccines and treatments. The management of the disease also requires modeling the
mechanisms of transmission and infection of the human body.

The virus’s biological functions rely on the formation of molecular complexes, such as protein com-
plexes, which are themselves generally involved in larger interaction networks and pathways. These
complexes and pathways are closely related to the several steps of the viral cycle mentioned in Sec-
tion 1.2: first, the virus’s entry into the human cell, then the production of viral proteins and formation
of new virions, and finally, the release of virions out of the host cell. Each of these steps is naturally
critical for the success of the infection, and understanding the corresponding mechanisms at both the
molecular and systems level is key to combating the virus.

For example, most of the COVID-19 vaccines, such as the Pfizer-BioNTech or Moderna vaccines,
focus on the viral gene that codes for the spike protein and plays a key role in the entry step of the
virus. In this context, the protective immunity induced by the vaccine comes from the fact that the host
antibodies that ’learn’ to recognize the spike protein should also be able to neutralize the virus. So, a
nuanced understanding of the structural interactions involving the spike protein is needed to explain the
particular problem of the virus entry. In Section 2.1, we explain how structural bioinformatics provides
computational methods for this task.

https://www.ecdc.europa.eu/en/publications-data/covid-19-testing
https://www.ecdc.europa.eu/en/publications-data/covid-19-testing
https://www.gisaid.org
https://www.ncbi.nlm.nih.gov/sars-cov-2
https://www.covid19dataportal.org
doi:10.7150/thno.47649
doi.org/10.1038/s41564-020-0761-6
doi.org/10.1038/s41564-020-0761-6
doi.org/10.1186/s13073-020-00751-4
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BOX 5. Potential Energy Landscape of a biomolecular system

X

V : potential energy

The energy landscape of a biomolecular system encodes its structural, thermodynamic, and kinetic
properties. The potential energy landscape (PEL) associates a potential energy to each conformation.
The main challenges of molecular simulation are to (1) find significant local minima of the PEL, (2)
compute statistical weights of catchment basins by integrating Boltzmann’s factor (for a so-called
NVT thermodynamics ensemble), and (3) identify transitions. Practically, the conformational space
X has dimension d = 3n, with n the number of atoms.

Another illustrative case is the cytokine storms occurring in some patients, particularly in the lungs.
This phenomenon is a cascade of exaggerated responses of the host’s immune system, characterized by
sudden and massive releases of cytokines. Although these proteins are a normal part of the body’s immune
response to infections, their excessive production can cause life-threatening symptoms. Understanding
and modeling the dynamics of such complex interactions raises difficult systems biology issues. We
elaborate on these issues in Section 2.2, focusing on universal questions and a range of biological systems.

2.1 On the role of structural models in combating the virus

Structural biology aims to bridge the gap between the spatial conformation and dynamics of biomolecules
(mainly proteins and nucleic acids) and their function. To understand the associated computational
challenges, observe that a molecule with n atoms is described by 3n Cartesian coordinates defining its
conformational space. As with any physical system, a biomolecule and its environment (i.e. the solvent)
can be associated with a potential energy. When chemical bonds are not altered, this potential energy is
computed from molecular mechanics-based force fields, which rely on classical mechanics. The graph of
the potential energy defines the potential energy landscape (PEL), described in Box 5 [21]. The sheer
difficulty of developing accurate models using PEL comes from two sources. First, biomolecular systems
are inherently large (tens of thousands of atoms), yielding very high dimensional PEL. Second, molecular
motions span ∼ 15 and ∼ 4 orders of magnitude in time and amplitude, respectively [22]. For example,
the vibrations of atoms sharing a covalent bond occur on the femtosecond time-scale, while biologically
relevant time scales are beyond milliseconds. To study such phenomena, a mix of experiments and
modeling-simulation techniques are used.

From the experimental standpoint, the structures of biomolecules are obtained thanks to a variety of
experiments, notably X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy
(cryo-EM), which deliver atomic models (i.e. atomic coordinates) of key configurations. In the case of
SARS-CoV-2, as of December 2020, circa 650 structures have been deposited in the Protein Data Bank.
However, the main mechanisms of interest are highly dynamic, and the structures obtained are merely
snapshots in a complex movie.
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From the modeling standpoint, the structure of a macromolecular system (isolated molecule or com-
plex) requires the characterization of active conformations and important intermediates in functional
pathways. In assigning occupation probabilities to these conformations, one deals with thermodynam-
ics. Finally, transitions between the states, modeled by a master equation (a continuous-time Markov
process), correspond to kinetics. These concepts have a direct translation on the PEL: stable states cor-
respond to significant basins of the PEL; thermodynamics require integrating Boltzmann’s distribution
on the basins; and finally, kinetic models qualify the dynamics between basins. As should be clear from
the description of PEL above, these questions require exploring and characterizing very high dimensional
spaces over time scales which span circa 15 orders of magnitude. The mathematical and computational
questions faced are immense.

The problems discussed above are essentially open, as experiments and simulations are currently
unable to unveil structural, thermodynamic, and kinetic properties of large or dynamic systems. Fortu-
nately, combining experimental and modeling approaches can provide invaluable insights. This has been
the case with SARS-CoV-2. Before presenting selected technicalities, let us briefly inspect the mecha-
nisms of infection by the virus, and more specifically, the entry of the virus into the host cell, which
makes it possible for the virus to inject its genetic material into the cell and replicate itself.

A closer look at the entry step of SARS-CoV-2. As in all molecular mechanisms, the entry step
involves a mutual recognition between two proteins, one from the virus and one from the infected cell,
followed by a highly dynamic event.

On the virus side, we have already seen that SARS-CoV-2 infects human cells with spikes found on
its envelope. These spikes are homotrimers (3 copies) of the protein S [27, 28]. Each chain consists of two
domains, S1 and S2, separated by cleavage sites denoted S1/2 and S2’ [29, 30, 31]. Domain S1 contains
the Receptor Binding Domain (RBD), while domain S2 contains the fusion machinery. Membrane fusion
is an essential process involved in trafficking between cells and cellular compartments, the exchange
of genetic information across individuals, and also in viral infection. Fusion is accomplished by fusion
proteins, which were first discovered in enveloped viruses. There are three classes of such proteins, namely
class I (found, for example, in influenza and SARS-CoV-2), class II (e.g. in dengue), and class III (e.g.
in herpes viruses). The main steps of the mechanism are shown in Box 6: (1) attachment of the RBD
to its target on the cell to be infected, (2) proteolysis cleavage/activation at S1/S2, triggering the release
of the S1 subunit, (3) second cleavage at S2’, triggering fusion machinery refolding—the anchoring of
the fusion peptide into the target membrane—and the envelope-membrane fusion. The virus genome
delivery into the target cell follows.

On the host side, in human cells, SARS-CoV-2, like other betacoronaviruses such as SARS-CoV,
targets the protein ACE2 [32], a membrane-bound enzyme catalyzing the hydrolysis of angiotensin II
into angiotensin.

Interestingly, the RBD adopts two conformations which are termed up/down or closed/open. The
RBD of SARS-CoV-2 stands up less often than that of SARS-CoV, which likely favors evasion from the
immune system [33]. This behavior also disfavors binding to the target (binding in the down configuration
yields steric clashes), but the lesser proportion of RBD standing up is counterbalanced by a high affinity
for ACE2 [33].

The mechanism sketched out above offers two main therapeutic opportunities. The first one consists
of preventing the attachment of the RBD to its receptor, which may be done by eliciting an immune
response that provides antibodies to block the RBD, or by providing drugs achieving the same effect.
The second one relates to the ability to block the refolding of the fusion machinery prior to membrane
fusion. We detail each route below.

Designing competitive blockers targeting the spike of SARS-CoV-2. The first strategy to
prevent infection by SARS-CoV-2 is to block its RBD. This can be done by mimicking the region of
ACE2 found at the interface with the RBD, as shown in Box 8(A). This goal was recently pursued
using de novo designed mini-proteins of circa 50 amino acids [34]. From the experimental standpoint, a
candidate protein can be validated in two complementary ways: first, by measuring its binding affinity
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BOX 6. SARS-CoV-2: host cell entry mechanism via virus envelope - cell mem-
brane fusion

Cell

Virus

Virus

Cell

(A) (B)
(C)

(D) (E)

Envelope

Membrane

Fusion pore

pre-fusion

post-fusion

crystal structure crystal structure

The complete spike involves two domains, S1 and S2. S1 contains the receptor-binding domain
(RBD, red ellipsis), while S2 contains the fusion machinery (blue rectangles). (A) Attachment
of the RBD to its receptor ACE2 (orange molecule, shown only once to avoid clutter) (B)
Cleavage step removing the S1 subunit (C) Refolding of the fusion machinery, and anchoring
into the cell membrane (D) The endpoints of the fusion protein bring the viral envelope and
the cell membrane into close proximity (E) The collaboration between several fusion proteins
triggers the formation of the hemi-pore and pore via virus envelope - cell membrane fusion.
The virus can inject its genetic material. Figure adapted from [25]. Structures displayed on
the left and right-hand sides: PDB:6xr8 and 6xra, from [39].
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BOX 7. Binding affinity

Consider two proteins P and L which associate to form the complex PL, which itself dissociates into
P and L:

P + L 
 PL. (1)

These two processes (association and dissociation), illustrated by the double harpoon, are due to
opposing phenomena: on the one hand, attraction forces result in a decrease of the potential energy
when P and L bind; on the other hand, thermal fluctuations result in dissociation of the complex
PL. The chemical equilibrium [23] is qualified by the association constant Ka = [PL]Eq/[P ]Eq[L]Eq

computed from the equilibra concentrations of the three molecular species. Equivalently, one can use
the dissociation constant Kd = 1/Ka. The dissociation constant is also related to the variation of the
Gibbs free energy by

∆G0
a = RT log Kd/c0. (2)

For biological complexes, Kd spans a wide range of scales: from 10−6 (signaling protein), to 10−12

(small molecules inhibiting proteins), and even 10−15 (biotin-avidin complex, strongest known non-
covalent interaction). Estimating ∆G0

a or equivalently Kd is key to qualify the stability of a complex.
In theory, the calculation can be carried out using the potential energy of the system [24]. In practice,
such calculations are currently intractable, so that a whole hierarchy of approximations are resorted
to.

(Kd) with the target (here the RBD), and second, by solving the structure of the complex via X-ray
crystallography or cryo-EM. However, 50 amino acids yield the astronomical number of 2150 ∼ 1066

candidate molecules. A careful in silico design is therefore mandatory, based on three steps: first, a
selection of suitable amino-acids based on those found in the protein ACE2; second, several simulation
rounds to check whether the two molecules bind, using docking and scoring methods [35]; and third, a
careful assessment of the interface in the docked complexes. The reader is referred to [34] for the protocol
used for the first two steps. In the sequel, we illustrate a recently developed tool to analyze the interface
between the RBD and a candidate blocker–the reader is referred to [36] for full details.

Given a protein-protein complex, a Voronoi model can be used to find the amino acids of the two
partners defining the interface (Box 8(B)). These amino acids can then be pulled back onto the sequence,
defining an interface string. Moreover, performing a multiple sequence alignment of several such strings
yields a multiple interface string alignment, or MISA. This construction can be done for two complexes,
namely (i) the RBD and ACE2, and (ii) the RBD and a candidate blocker. For the example used in our
illustration (LCB1, [34]), remarkably, it is seen that both the blocker and ACE2 target the same amino
acid on the receptor binding domain (RBD) (Box 8(C,D)). Beyond this particular case, efficient screening
identified seven designs with dissociation constant Kd in the range 1-20 nano-molar were obtained, and
two with Kd < 10−9 [34] (Box 7 on binding affinity). These molecules also blocked SARS-CoV-2 infection
in culture cell lines, and clearly provide a sound starting point to design anti-SARS-CoV-2 therapeutics.

Delineating the fusion machinery refolding of SARS-CoV-2. The second strategy to prevent
infection by SARS-CoV-2 is to preclude the refolding of its fusion machinery, which hinders the fusion
between the viral envelope and the cell membrane. As noted above, this process only concerns the
S2 domain of the spike –the cleavage steps remove S1. Interestingly, a similar mechanism holds for
the influenza virus, whose class I fusion, called hemagglutinin, contains two domains, HA1 and HA2,
equivalent to the S1 and S2 domains in SARS-CoV-2. The example of HA2, which has been under
scrutiny for decades, is very informative. In particular, it is known that so-called broadly neutralizing
antibodies bind to the stem of HA2, preventing its refolding and therefore fusion [37]. Interestingly, the
refolding of the region aa 33-172 of HA2 (140 a.a., 1150 heavy atoms) was recently studied [38] in the
framework of PEL. A systematic exploration and characterization of the PEL of this system resulted
in a database with ∼ 33, 000 local minima and ∼ 41, 000 transition states. These numbers show the
complexity of such dynamical processes. Importantly, the most stable structures (identified by their
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BOX 8. Designing miniproteins inhibiting the entry of SARS-CoV-2 by blocking
its Receptor Binding Domain (RBD)

RBD bound to ACE2: amino acids involved

RBD bound to LCB1: amino acids involved

(A) (B)

(C)

(D)

(A) (PDB: 2ajf) Complex between the RBD of SARS-CoV-2 (red) and ACE2 (cyan). The
Voronoi interface model in green identifies the amino acid at the interface of the complex. To
each Voronoi tile in green, corresponds a pair of atoms, one on each partner, in direct contact
in the complex. The corresponding amino acids are displayed in cartoon mode (solid blue,
red). On ACE2, one clearly distinguishes contributions from one long helix. The set of amino
acids found at this interface, once pulled back onto the protein sequence, defines an interface
string summarizing the interface. Aligning such strings defines a multiple interface string
alignment or MISA. (B) (PDB: 7jzu) Complex between the RBD of SARS-CoV-2 (red) and
the designed protein (LCB1) meant to compete with ACE2. Note the similar helical structure.
(C) MISA of the RBD bound to ACE2 (complex in panel (A)) (D) MISA of the RBD bound
to a candidate blocker (complex in panel (B)) Note that the footprints of ACE2 and LCB1 on
the RBD are highly similar. Panels (C,D) prepared using the method from [36].
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statistical weights) are candidate conformations that may be targeted by therapeutics.
In coronaviruses, structural rearrangements of domain S2 have been characterized experimentally

[29, 39], showing that the postfusion S trimer adopts a 180 Ålong cone-like shape. Intuitively, the S2
domain behaves like a spring-loaded mechanism, doubling its length along the refolding process. This is
an astonishingly large conformational change. While the first and last frames of this movie have been
solved experimentally, the intermediate meta-stable states are unknown.

Delineating this mechanism, in a manner analogous to the work carried out for influenza HA2, will
pave the way to design blockers.

Internet resources

• The Protein Data Bank: https://www.rcsb.org and more specifically the COVID-19/SARS-
CoV-2 page: https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52&f

eature=true

Further reading on structural bioinformatics

[21] Energy Landscapes. D. J. Wales, Cambridge University Press (2003)

[22] Molecular dynamics: survey of methods for simulating the activity of proteins. S.A. Adcock and A.J.
McCammon, Chemical reviews, 106(5):1589–1615 (2006)

[23] Statistical mechanics: entropy, order parameters, and complexity J. Sethna et al. volume 14, Oxford
University Press (2006)

[24] Calculation of protein-ligand binding affinities. M.K. Gilson and H-X. Zhou, Annual review of biophysics
and biomolecular structure, 36(1):21 (2007)

[25] Viral membrane fusion. S.C. Harrison, Virology, 479–480:498–507 (2015)

[26] New directions for diffusion-based network prediction of protein function: incorporating pathways with
confidence. M. Cao, C. M. Pietras, X. Feng, K. J. Doroschak, T. Schaffner, J. Park, H. Zhang, L. J. Cowen,
and B. J. Hescott. Bioinformatics, 30(12):i219–i227 (2014)

Bibliographical sources on structural bioinformatics

[27] Assembly of coronavirus spike protein into trimers and its role in epitope expression. B. Delmas and
H. Laude, Journal of virology, 64(11):5367–5375 (1990)

[28] Structure, function, and evolution of coronavirus spike proteins. F. Li, Annual review of virology, 3:237–261
(2016)

[29] Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. A. C. Walls,
M. A Tortorici, J. Snijder, X. Xiong, B.-J. Bosch, F. A. Rey, and D. Veesler, Proceedings of the National
Academy of Sciences, 114(42):11157–11162 (2017)

[30] Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. A. C. Walls, Y.-J. Park, M. A.
Tortorici, A. Wall, A. T. McGuire, and D. Veesler, Cell (2020)

[31] Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies.
D. Wrapp, D. De Vlieger, K. Corbett, G. Torres, N. Wang ad W. Van Breedam, K. Loes van Schie,
M Hoffmann, S. Pohlmann, B. Graham, N. Callewaert, B. Schepens, X. Slelens, and J. McLellan, Cell
(2020)

[32] Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. R. Yan, Y. Zhang, Y. Li,
L. Xia, Y. Guo, and Q. Zhou, Science, 367(6485):1444–1448 (2020)

[33] Cell entry mechanisms of SARS-CoV-2. J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach and F. Li,
PNAS, NA(NA):1–8, (2020)

https://www.rcsb.org
https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52&feature=true
https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52&feature=true
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[34] L. Cao, I. Goreshnik, B. Coventry, J.B. Case, L. Miller, L. Kozodoy, R. Chen, L. Carter, A. Walls, Y-J.
Park, E-M Strauch, L. Stewart, M.S. Diamond, D. Veesler, and D. Baker, De novo design of picomolar
sars-cov-2 miniprotein inhibitors. Science, 370(6515):426–431, (2020)

[35] Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: Capri 7th edition.
M. Lensink, N. Nadzirin, S. Velankar, and S. Wodak. Proteins: Structure, Function, and Bioinformat-
ics (2020)

[36] Boosting the analysis of protein interfaces with multiple interface string alignment: illustration on the spikes
of coronaviruses. S. Bereux, B. Delmas and F. Cazals, Submitted (2020)

[37] Broadly neutralizing antiviral antibodies. D. Corti and A. Lanzavecchia, Annual review of immunology,
31:705–742 (2013)

[38] Energy landscape for the membrane fusion pathway in influenza a hemagglutinin from discrete path sam-
pling. D. J. Wales, D. F. Burke, and R. G. Mantell, Frontiers in Chemistry, 8:869 (2020)

[39] Distinct conformational states of SARS-CoV-2 spike protein. Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M.
Sterling, R. M. Walsh, S. Rawson, S. Rits-Volloch, and B. Chen, Science, 25(369):1586–1592 (2020)

2.2 Systems-level graphical and executable models

Computational systems biology aims to study interaction mechanisms between various biological entities,
such as proteins, genes, RNAs, metabolites, and small molecules like ATP and calcium ions, using com-
putational models. The various biological entities communicate and interact with each other, forming
intertwined networks that give rise to the behavior of the system. In a complex biological system like
a cell, the emergent behavior is much more complicated than the sum of its subparts. Understanding
and elucidating the complex behaviors of biological systems requires appropriate modeling tools and
methods [40]. The development of the field of systems biology was initiated in the late 1990s in response
to the rapid accumulation of biological data, including genome sequences, gene expression data, and
protein-protein interactions, for example [41]. The amount of data and the rhythm of its production has
only increased since, and integrative, holistic methodologies that can explain the data from a systems
perspective are needed to put the bits and pieces of the new knowledge together. The goal is to construct
computational models that can mimic the biological system’s behavior as realistically as possible, allow-
ing for in silico simulations and experiments. Computational systems biology can offer a system-level
view, combining structural and dynamical analysis with the integration of multiple layers of biological
information. This approach accelerates scientific research and discovery as with the aid of computers,
hundreds of experimental conditions can be simulated in a relatively short amount of time. The same
scenarios could otherwise take years to be performed in classical experimental lab settings.

The models can be static representations of biological mechanisms (graph-based models), focusing
on topology and graph properties, such as connectivity or centrality. They can also be of a dynamic
nature, using mathematical descriptions of the regulations. Quantitative, kinetic models and qualitative,
logic-based models are two of the main types currently used to model biomolecular networks. These
models are used to simulate different conditions, like the presence of a viral protein inside a host cell, or
the impact of a drug in a patient [42].

The SARS-CoV-2 pandemic prompted a crisis response, bringing scientists together in new collabo-
rative contexts. In bioinformatics, a range of specialists have contributed their complementary skills to
rapidly develop computational pipelines and build graphical and executable, dynamic models spanning
many biological processes. In the next part, we will present such efforts to build novel methodologies
or adapt existing ones to tackle a variety of questions such as the dynamics of infection, differences
between the dynamics of SARS-CoV-2 and other coronaviruses, drug repurposing and identification, and
characterization of SARS-CoV-2 virus-host interaction mechanisms.

Building molecular maps of virus-host interaction mechanisms. The COVID-19 Disease Map
project [46] is a large-scale, international and interdisciplinary community effort (Luxembourg, France,
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BOX 9. Example of an SBGN diagram

A textbook diagram (left) and an SBGN diagram of the same pathway (right). These represent the
Apoptosis diagram featured in Fung and Liu’s seminal review, Human Coronavirus: Host-Pathogen
Interaction, published in 2019 in the Annual Review of Microbiology [54]. The textbook diagram
describes the Apoptosis pathway, along with potential intervention points of the viral proteins with
the host cell machinery. As it was published in 2019, the diagram uses information mainly derived
from SARS-CoV literature. In the right-hand diagram, the Apoptosis map built with CellDesigner
graph editing software [55] is structured into three compartments, namely, the extracellular space
containing the ligands, the plasma membrane with receptor-ligand complexes, and the cytoplasm
with all signaling and viral proteins. Green boxes represent generic proteins, while peach-colored
boxes represent viral proteins. Red-colored interactions are inhibitions, while the black interactions
are activations. The diagram follows SBGN Process Description graphical notation guidelines for
the standardized representation of biological mechanisms [50], making the diagram both human and
machine-readable. The diagram is part of the COVID-19 Disease Map repository [47].

Spain, Netherlands, Germany, Italy, Great-Britain, USA, . . . ) launched in March 2020. It has united
267 scientists to build an open-access, interoperable, and computable repository of COVID-19 molecular
mechanisms [47]. The community uses biocuration of scientific literature, text mining, and AI solutions
to accelerate content building, along with popular pathway databases such as REACTOME [48] and
WikiPathways [49]. Systems Biology standard notation schemes, like the Systems Biology Graphical
Notation, SBGN [50], are used to represent the biological mechanisms. In these diagrams, nodes are
biochemical entities, and arcs between nodes denote interactions between entities using standardized
semantics depending on the form of the arc. An example is provided in Box 9. The Systems Biology
Mark up Language (SBML) [51] is also used for modeling networks and creating content that is both
human and machine-readable. This rich scientific ecosystem is described in Box 11.

In December 2020, the molecular events covered in the repository included 21 diagrams in MINERVA
build, 18 diagrams in the Wikipathways collection, and 2 diagrams in REACTOME describing, among
others, the virus replication cycle and subversion of host defenses, the virus attachment and entry,
replication and release,. . . In addition to creating curated, standardized and interoperable diagrams, the
community also develops tailor-made analytical and modeling pipelines for data integration and network
analysis, and computational modeling.

From static molecular maps to dynamic Boolean networks. Molecular maps are well-adapted
to describe the pathways involved in a biological system, but as they are static, they cannot account
for the dynamical behavior of the system. Studying dynamic behavior (how a system evolves over time
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BOX 10. Example of a Boolean model

The inferred Boolean model corresponding to the BOX 9 diagram (left) and a real-time simulation
example (right). Using the tool CaSQ [52], the Process Description Apoptosis diagram is now com-
pressed in an Activity Flow-like graph, where only regulations and signaling flow are kept. Each
interaction is described with a preliminary logical formula that defines the behavior of the nodes at
each discrete time step, based on the topology of the graph and the semantics encoded. In the illus-
trated example, we can see a real-time simulation using the web platform Cell Collective [44]: when
the death signal is activated via the FAS and FAS ligand complex (100 activity in the simulation
graph), the Apoptotic phenotype will get activated after a few time steps (starts from 0 and increases
to 100 activity)
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BOX 11. Ecosystem of the COVID-19 Disease Map effort

The multidisciplinary, large-scale community effort of the COVID-19 Disease Map project develops
interfaces between various platforms and tools. The community comprises Curators that use a variety
of diagram editors and platforms, and benefit from the text mining and AI solutions developed or
adapted within the community. Curators communicate with Analysts and Modellers, who use the
curated content to create executable models of disease mechanisms. The community supports stan-
dardization efforts and the use of Systems Biology standards where possible. It promotes transparency
and reproducibility by adhering to FAIR guiding principles (findable, accessible, interoperable, and
reusable) and by using public repositories to share code and files. The figure here [47] illustrates the
rich ecosystem of interoperable tools and platforms that the community members employ. It also
shows the formats that facilitate the data exchange.
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or in response to a given stimulus) requires an inherent execution scheme that explicitly describes the
rules of the system’s regulation. Boolean networks represent the simplest form of a qualitative model
and are very often used to model gene regulation or signaling events. In a Boolean network, a node
can be assigned the value 0 or 1 (0 for inactive or absent, 1 for active), and arcs between nodes can
describe activation or inhibition. Boolean functions using logical operators (AND, OR, NOT) describe
the rules that govern the regulation of each node based on the state of their regulators at every update
of the system. The two most popular updating schemes are the synchronous—where all nodes of the
network can be updated at the next step (deterministic behavior), and the asynchronous—where only
one node of the network is allowed to change its state at the next step. Despite their simplistic nature,
Boolean networks can capture most of the dynamics of a biological system by identifying steady states
and complex attractors. These models are qualitative and can be used to address questions such as which
phenotype will be activated in a given set of initial conditions [43].

The development of CaSQ has allowed the direct translation of static molecular maps to fully exe-
cutable Boolean models with generalized logical rules based on the topology and semantics of the original
molecular map [52]. The generated models allow for in silico simulations, perturbations, and predictions
using various modeling platforms and tools such as Cell Collective [44], GINsim [53], and BoolNet [45],
to name a few. The models are encoded in SBML qual format, a standard for qualitative, logic-based
models in biology.

Computational modeling efforts. Besides dynamical models that account for time in the simula-
tions, more mechanistic models of pathways also provide a way to study the impact of gene activity on
phenotype. Among these, Hipathia is a tool that analyses transcriptomic and/or genomic data and cal-
culates cellular profiles [56]. The diagrams of the COVID-19 Disease Map project have been implemented
in the CoV-Hipathia version, where expression data are used to highlight upregulated or downregulated
areas in the map. Hipathia can also derive pathway information from databases such as OmniPath [57]
or SIGNOR 2.0 [58]. Another important community effort consists of the collaborative creation of a mul-
tiscale simulation model to study SARS-CoV-2 dynamics in lung tissue. The model was built rapidly and
shared internationally as open-source code with an online interactive model that everybody can access
and expand. The consortium behind this large-scale community effort includes experts across virology,
immunology, mathematical biology, quantitative systems physiology, and high-performance computing
[59]. An integrated host-virus genome-scale metabolic model of human alveolar macrophages and SARS-
CoV-2 was also proposed [60]. The analysis of metabolic changes using flux balance analysis (FBA), a
mathematical method for simulating metabolism in genome-scale reconstructions of metabolic networks,
for both uninfected and infected host cells, demonstrated different profiles for host cells and the virus.
Based on the hypothesis that modulations in the metabolic level could have different impacts on host and
virus, the researchers studied the knock-out of the guanylate kinase (GK1, which decreased the virus’s
growth while leaving the host unaffected. Further in vitro testing is required to assess any potential
therapeutic effect of GK1 inhibitors on SARS-CoV-2 infections.

Assessing the impact of environmental stressors. A computational systems biology approach
was also employed to study whether environmental stressors, such as endocrine disrupting chemicals
(EDCs), could contribute to certain chronic diseases and aggravate the course of COVID-19 [61]. The
scientists compiled relevant datasets extracting biological associations of major EDCs to proteins from
the CompTox database and COVID-19 comorbidities from the GeneCards and DisGeNET databases. A
tripartite network (EDCs-proteins-diseases) was developed to identify proteins overlapping between the
EDCs and the diseases. The Th17 and the AGE/RAGE signaling pathways were identified as possible
targets of EDCs and as contributors to COVID-19 severity, thereby highlighting possible links between
exposure to environmental chemicals and disease development.

Internet resources

• The COVID-19 Disease Map project: https://covid.pages.uni.lu

https://covid.pages.uni.lu
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• The MINERVA build of COVID-19 Disease Map: https://covid19map.elixir-luxembourg.o

rg/minerva

• The COVID-19 Pathways Portal on WikiPathways: https://www.wikipathways.org/index.php
/Portal:COVID-19

• The REACTOME SARS-CoV-2 (COVID-19) infection pathway: https://reactome.org/conte

nt/detail/R-HSA-9694516

• The CoV-Hipathia: http://hipathia.babelomics.org/covid19

• The PhysiCell prototype for SARS-CoV-2: http://physicell.org/covid19

• The GeneCards website: https://www.genecards.org
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2.3 Genetic susceptibility to the disease

As a complement to the analysis of the virus and environmental stressors, it is of great interest to
understand the diversity of host responses. Indeed, one striking aspect of COVID-19 is how greatly
the severity of its clinical manifestations varies across patients. While most people are asymptomatic
or experience only mild symptoms, others will have a severe life-threatening response, which may be
independent of their age or preexisting health condition(s). This type of observation suggests that genetic
differences between individuals might contribute to different reactions to the disease. The hypothesis can
be investigated by collecting genetic information from a large panel of healthy and infected individuals.
Variations across individuals’ genomes are then studied to identify possible links to the disease severity.
Such studies on large population samples result in a better understanding of the infection susceptibility
and lead to multiple potential applications: identifying patients at greatest risk, adapting the treatments,
designing clinical trials, or even discovering new genetic targets against the virus. This is, however, a
narrow road. The contribution of genetics to the susceptibility to, or severity of, a multifactorial disease
such as COVID-19 may be quite small compared to other physiological and/or environmental factors.
Moreover, the genetic contribution may result from many genomic positions, each contributing to a weak
extent, rather than from a single mutation. In this context, the association signal may be very hard
to detect. Studies therefore require panels of thousands of individuals in order to reach a reasonable
statistical power (capacity of detection) as well as the use of advanced statistical models to prevent
erroneous detection.

In June 2020, the first article identifying a genetic signal in the human genome was published [63].
The authors identified two regions, located on chromosome 3 and chromosome 9, through a statistical
analysis called GWAS (Genome-Wide Association Studies. The analysis was conducted on genomic data
collected at seven hospitals in the Italian and Spanish epicenters of the pandemic in Europe: 2,000
infected patients and 2,000 control participants. GWA studies collect two types of information for each
individual on the panel: phenotypic information (e.g., infection level), and genotypic information. The
DNA sequence of each individual is read at different positions over the genome, and their alleles (versions)
are identified. Assuming that only two different alleles can be observed at a specific position, the whole
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panel can be split into two subsamples – individuals having the first allele and individuals having the
second one – allowing the disease severity measured in each subsample to be compared. Positions at
which a significant difference between the two subsamples are observed are said to be “associated” to
the disease severity.

Although the basic problem is quite simple, one needs to account for additional factors that may affect
the trait and potentially blur the biological signal of interest. These factors include the gender or the age
of the individuals, and the population structure of the panel. All these factors - along with the effect of
the marker under study - are included in a regression model in order to quantify their respective impact
on the disease severity. When members of the same family are included in the panel, the model becomes
a mixed logistic regression model that includes a similarity matrix describing the levels of relatedness
between all individuals. From a methodological point of view, running a GWA study requires evaluating
the association between the trait of interest and each position along the genome. It is now standard
practice to consider and query a very large number of positions (e.g., more than 8 million for this
association study), each query requiring the fitting of the aforementioned logistic model, which results
in a significant computational burden.

Interestingly, the identification of the genomic region on chromosome 9 can be related to previous
clinical observations: individuals in blood group A were at higher risk of severe disease, while individuals
in blood group O experienced a protective effect. This phenomenon might be explained by the fact that
the genomic region in question carries the ABO genes that code for blood group. Regarding the region
of interest on chromosome 3, further studies based on population genetics and evolutionary models have
established that the specific form of the involved genomic segment could be inherited from Neanderthals,
which creates an unexpected link between paleogenomics and COVID-19 [64]. This information has been
widely reported in the mainstream press. This form occurs at a frequency of approximately 30% in South
Asia, 8% in Europe, and more rarely in Africa, which could explain the initial geographical distribution
of the disease.

During the following months, additional cohorts were recruited and analyzed. Like other data previ-
ously mentioned in this report, the results of each GWA study are usually available in public databanks,
with full documentation and interoperable formats. Sharing individual genetic data raises ethical issues
that should be addressed by ethics committees and data anonymization procedures. But the scientific
value of this data is important. The availability of data is crucial for meta-analysis, which consists of
performing a joint statistical analysis of all available results obtained from different studies in order to
reach a higher detection level and identify new genetic markers, such as those involved in COVID-19.
Meta-analyses require efficient and scalable algorithms to fit such models and data. In the last few years,
the bioinformatics community has made some significant contributions for this purpose, including the
METAL method [65] that was recently applied to the joint analysis of GWAS for the COVID-19 disease.
Currently, a full GWA study involving 100,000 individuals genotyped at tens of millions of positions can
be performed in a matter of hours – or minutes, depending on the complexity of the fitted model [66, 67].
These methods even open the way to global genetics. For example, the American private company An-
cestryDNA, which specializes in genealogy and at-home genetic testing, conducted a large-scale analysis
in Spring 2020 [68]. It collected over 500,000 COVID-19 survey responses between April and May 2020
with accompanying genetic data from its own database. This work confirmed the previously identified
regions on chromosomes 3 and 9.

Internet resources

• The COVID-19 Host Genetics Initiative, hosted at www.covid19hg.org, gathers the GWAS results
for meta-analysis reusability by the scientific community.
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3 Understanding the past, anticipating the future: the origins
and dynamics of SARS-CoV-2 evolution

Determining the origins of the SARS-CoV-2 virus is crucial for multiple reasons. Beyond its scientific
relevance, precisely reconstructing the chain of events that led to the COVID-19 pandemic would most
likely have a strong impact on geopolitics. Ecologists have also suggested that there could be a causal
relationship between the current erosion of biodiversity due to human activities and the advent of pan-
demics1. Deciphering the origins of SARS-CoV-2 would provide crucial evidence for or against this
stance. But most importantly, knowing the exact cause of the pandemic could help prevent similar crises
in the future. We offer below a non-exhaustive overview of the available evidence about the origins of
SARS-CoV-2.

3.1 Hypothesis on the origins of the virus: an overview

After the first public database searches described in Section 1.2, sequence alignments targeting betacoro-
navirus genomes and some functional regions of these genomes provided a more precise picture of the
origin of SARS-CoV-2.

First, they indicated that the strain most closely related to SARS-CoV-2 was collected in 2012/2013
inside a cave in the Yunnan province (China). This strain, named RaTG13 [69, 70], has a particularly
interesting story to tell. First of all, the corresponding sample was obtained after six miners who worked
in this cave fell ill, showing symptoms similar to those displayed by patients suffering from COVID-19.
Also, a large population of bats is found in this particular cave. The sample of interest was retrieved
by a research lab specializing in viral diseases transmitted to humans by these animals. The sample was
then transferred to the city of Wuhan, where the lab in question is located, not far from the food market
that is suspected to be the origin of the pandemic.

However, RaTG13 and SARS-CoV-2 genomes are only ∼96% identical, and the most recent common
ancestor of these two viruses is at least 20 years old [71]. Although these two strains are clearly closely
related, RaTG13 could only be at the origin of the current pandemic if that strain had already been
circulating and evolving in humans (or a closely related host) for a few years without triggering any public
health/sanitary alert. Furthermore, RaTG13 is unable to infect human cells [72], making it an unlikely
candidate for the original strain. Moreover, in several previous epidemics caused by coronaviruses, bats
did not directly transmit the virus to humans. For instance, a civet is thought to be at the origin of
the 2003 epidemic provoked by the SARS-CoV virus. In 2012, a coronavirus transmitted by camels to
humans was responsible for the so-called Middle East respiratory syndrome, MERS. There are also other
examples where bats were ruled out as the last known host before diffusion in the human population.
However, in all these cases, the chiropterans are thought to act as the natural reservoir for the coronavirus
strains associated with these zoonotic diseases.

1see for instance https://ipbes.net/pandemics
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The role of recombinations. The existence of an intermediate host that could have facilitated the
transmission of SARS-CoV-2 from bats to humans therefore remains an open question. Pangolins are
known for being infected by viral strains very close to SARS-CoV-2. In fact, the Spike protein, which plays
a central role in the entry of the virus in human cells, displays a very similar sequence in the coronaviruses
circulating amongst pangolins and in SARS-CoV-2. The identity percentage within the receptor-binding
domain (RBD) of this protein is 97.4%, while the same genomic region in RaTG13 is only 83.3% identical
to SARS-CoV-2 [73, 74]. However, other viral strains circulating in bats show insertions that encode for
residues essential to entering lung cells and other tissues in humans [74]. These elements suggest that
the intervention of an intermediate host, pangolin or other, is not an absolute requirement for explaining
the origins of the pandemic, and that recombination between multiple strains of related coronaviruses
could have played a central role in the process. Besides mutations, recombination is another natural way
viruses evolve. When a cell is infected by several strains of the same virus, their genomes can mix and
produce a novel strain. Here, co-infection of bats with multiple strains, thereby potentially combining
genomes from distinct strains, has been documented in the recent past [69]. Further investigations about
the origins of the SARS-CoV-2 will therefore probably concentrate on the mechanisms that assembled
the mosaic genome found in the SARS-CoV-2 virion that infected the first human patient.

The role of adaptation. Alongside recombination, adaptation is of the utmost importance in explain-
ing how SARS-CoV-2 successfully disseminated in the human population on a global scale. Adaptive
processes are likely to have shaped the evolution of the RBD region of the spike protein so as to optimize
its binding to the ACE2 protein, the human enzyme that lets the virus enter the cells (see Section 2.1).
It is not clear, however, whether adaptation took place after or before the zoonotic event [75]. Further-
more, as opposed to SARS-CoV, which showed signs of rapid genomic adaptation to humans at the start
of the epidemic, SARS-CoV-2 has followed a different evolutionary trajectory [76]. Apart from a few
notable exceptions (see below), SARS-CoV-2 seems to have been evolving according to a neutral regime
[77], at least for most of 2020. This behavior is in line with the hypothesis that the virus was already
well adapted to humans at the start of the pandemic. A slightly modified form of SARS-CoV-2 could
have thus circulated among humans for some time. Quiet circulation amongst other mammals is another
possibility. In fact, the human ACE2 receptor is very similar to that found in several domestic and/or
laboratory animals and livestock such as hamsters, cows, goats or sheep [78].

It is worth noting, however, that, despite an overall neutral evolution, adaptation is likely to govern
the fate of some mutations of the SARS-CoV-2 genome. Hence, the replacement of an aspartate by a
glycine residue at position 614 of the spike protein (noted D614G) has seen its frequency and geographic
range increase rapidly during spring 2020. This particular mutation is associated with higher viral loads
and is over-represented among younger age cohorts [71, 79]. Another variant, first detected in the UK,
also sharply increased in frequency late in 2020. This lineage, termed B.1.1.7 (or 501Y.V1), sustained
an unusually large number of substitutions. Four out of the 14 B.1.1.7-specific mutations are located,
once again, in the spike protein, including, most notably, the replacement of an Asparagine residue at
position 501 (see Box 8) by a Tyrosine in the RBD region. Evidence indicates that these changes may
facilitate the transmission of the virus, suggesting that natural selection played a role in the processes
that led to a worldwide increase in the frequency of this lineage [80, 81].

Questions related to the actual adaptation processes taking place are nonetheless difficult to answer
given the relatively low amount of genetic diversity observed amongst circulating SARS-CoV-2 viruses
to date. Also, efforts to clarify the origins of the virus would greatly benefit from new samples from
different places on earth, particularly China. The cave in the Yunnan province where RaTG13 was found
is undoubtedly one the most interesting areas to search. Re-analyzing the tissues collected from some of
the Yunnan miners who fell sick in 2012/2013 would also be of utmost interest. It would furthermore be
relevant to search for viruses related to SARS-CoV-2 in data banks of human tissues that are conserved
by many research laboratories around the world.
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3.2 Using phylogenetics to reconstruct and monitor the pandemic

Comparing and aligning genetic sequences conveys a wealth of information about the evolutionary re-
lationships between genes, genomes, populations, and species, depending on the scale of the analysis.
It is possible to depict these relationships by creating a phylogenetic tree that explains the evolutionary
history of the sequences. The phylogenetic tree represents the backbone along which genetic mutations
take place. In practice, multiple sequence alignments of DNA and/or protein sequences are fed as in-
put for phylogenetic tree-building methods. The tree reconstruction techniques then rely on a sound
mathematical criterion to reconstruct the tree that best fits the available data.

https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
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https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-12-31-COVID19-Report-42-Preprint-VOC.pdf
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BOX 12. How to construct phylogenetic trees: likelihood-based techniques

The likelihood criterion is a very well-characterized statistical criterion that is commonly used
to infer phylogenies. The likelihood of a phylogenetic model corresponds to the probability
of the observed molecular data, i.e., the multiple sequence alignment, given the model. In
other words, the phylogenetic model can be considered here as a “stochastic generator” that
mimics molecular evolution by randomly mutating sequences that evolve along its edges. The
sequences observed at the tips of the tree are the product of this stochastic simulation. Our
goal is to find the parameters of the generator that best fit the observations. Evaluating
the likelihood of a phylogeny relies on a recursive algorithm that corresponds to a depth-first
post-order tree traversal. The core of the recursion consists of evaluating the probability of
the subtree below a particular node given the ancestral sequences that could be observed at
these nodes. Because the different positions along the analyzed gene or genome are assumed
to be independent and to evolve according to the same model (i.e., the columns in the align-
ment are all independent and identically distributed), the likelihood score can be expressed as
the product of the likelihoods evaluated at every sequence position. In layman’s terms, using
the likelihood score as a guide for the inference guarantees the best exploitation of the data
with respect to the parameters of interest, i.e., the phylogenetic tree in the present context.
It should thus not come as a surprise that, in practice, likelihood-based tree reconstruction
techniques provide, on average, the most accurate phylogenetic tree estimates, assuming that
the probabilistic model describing the mutation process is not too distinct from the truth.
Two options are then available: one can either (1) search for the parameter values that max-
imize the likelihood function, or (2) sample these values to a frequency proportional to their
likelihoods or a posteriori probabilities. Maximizing the likelihood of a phylogenetic model
relies on heuristic algorithms that alternate between updating the tree topology, i.e., the struc-
ture of the graph, and adjusting the continuous parameters of the model (the edge lengths, the
relative rates of different types of substitutions, e.g., transitions vs. transversions). Similar op-
erators are used by techniques that sample the model parameters instead of optimizing them.
A major difference with the maximization approach is that sampling techniques sometimes
retain sub-optimal solutions, and the set of all sampled solutions defines the whole posterior
distribution of parameters instead of point estimates. Hence, sampling and maximization
techniques do not solve the same problem, thereby explaining why sampling techniques are
inherently slower than maximization approaches. Note, however, that quantifying the variabil-
ity of parameter estimates in the context of maximum likelihood generally requires running
non-parametric bootstrap analyses, which can make them just as computationally costly as
sampling approaches. Evaluating the likelihood score is the main computational bottleneck of
these inference techniques. Yet, important progress has been made in this area over the last
fifteen years. Research has focused here on re-using partial likelihood scores, i.e., likelihoods
of subtrees that are common to multiple sites in the alignment or likelihoods of subtrees not
affected by operators that update the phylogeny when exploring new solutions [82, 83]. Imple-
menting algorithms that accommodate for the architecture of modern computing units such
as GPU has also helped speed up the calculation [84].
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The limits of likelihood methods. Phylogenetic reconstruction is a central field of bioinformatics.
Like many other areas of this discipline, a large array of algorithms have been proposed over the years
to cope with data of increasing size and complexity. From a historical perspective, maximum-likelihood
is the method of choice. Introduced by Felsenstein in 1981, the principle is to find the tree and the
parameters of the nucleotide substitution model that maximize the probability of the multiple sequence
alignment. The maximum-likelihood paradigm rests on sound mathematical properties, but it is com-
putationally intensive. It has been the subject of many fruitful subsequent developments to speed up
the calculations. We present the highlights in Box 12. Nonetheless, despite all these optimizations
and heuristics, likelihood-based techniques start to struggle when processing data sets with more than
∼1,000 distinct sequences. Hence, maximum-likelihood was used, for example, to construct the reference
phylogeny of March 2020, which relies on 176 SARS-CoV-2 genomes. The tree is shown in Box 13. How-
ever, the rapid accrual of SARS-CoV-2 genomes in the GISAID database made it impossible to carry on
using maximum-likelihood, or Bayesian sampling techniques for that matter. Faster, but less accurate
techniques, which rely on the minimum evolution principle, are now used to update the phylogeny of
SARS-CoV-2.

Reference SARS-CoV-2 phylogenies with distance methods. The minimum evolution criterion
applies to the matrix of pairwise distances between sequences instead of the raw data (i.e., the multiple
sequence alignment). Assuming that such a matrix is already available (it is usually estimated using
the same stochastic models of evolution as those used by likelihood-based inference approaches), the
rationale here is to choose, for a given tree topology, edge lengths that best fit the estimated pairwise
distances. A weighted least-squares criterion that accommodates for the variance of distance estimates
is used here to work out the lengths of all edges in the tree. The selected tree topology minimizes the
sum of edge lengths estimated in this way, thereby following the principle of Occam’s razor.

The pitfall of recombinations. Until now, phylogenetics software tools have been able to handle the
large number of SARS-CoV-2 genomes produced daily. There is, however, a main theoretical frontier
with these existing methods: neither likelihood- nor distance-based approaches account for recombina-
tions, whereas we have seen that this process is central to understanding the origins of the COVID-19
pandemic (see Section 3.1). As of January 2021, recombination does not seem to have substantially
impacted the dynamics of the pandemic [85]. Yet, this situation is likely to change with an increas-
ing amount of observable polymorphism as mutations keep accumulating on the SARS-CoV-2 genome.
Moreover, evidence indicates that recombination played a role in the dynamics of previous CoV epidemics
[86]. Because recombination exchanges genetic material from distinct lineages, it greatly complicates the
phylogenetic signal conveyed by whole genomes, with different portions of these genomes having dis-
tinct evolutionary histories. Properly accommodating for this feature of molecular evolution is therefore
important. Detecting the presence of recombination-driven breakpoints within an alignment of homolo-
gous sequences is the first step towards tackling this issue. Phylogenetic models that explicitly account
for recombination are also being developed. Sophisticated methods that combine graph algorithms and
probabilistic modeling are involved here. Further developments are required here in order to alleviate
biases in substitution rate and node age estimates due to recombination.

Internet resources

• nextstrain.org is specialized in monitoring pandemics and epidemics using graphical tools based
on phylogenetics. It is arguably one of the most reliable sources of information regarding the
evolution of SARS-CoV-2 (and other viruses). The reference phylogeny for SARS-CoV-2 is de
facto that proposed on this site. The tree is built using the software tool FastTree [87], which
implements a hybrid method inspired by the same agglomerative algorithms that distance-based
methods use. The site also provides detailed reports on the dynamics of the pandemic in different
countries/regions, with the marriage of phylogenetics and geography. Indeed, phylogenetics, when
applied to geo-referenced genetic data, can help determine the spatial location of the ancestor of
a sample of genomes, thereby providing helpful information about the location where a pandemic

nextstrain.org
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BOX 13. Phylogenetics analysis from 176 early SARS-CoV-2 genomes

The analysis uses 176 full-length SARS-CoV-2 genomes that were available on the GISAID and
NCBI platforms before March 2020: sequences were collected from December 2019-February
2020. Each color corresponds to the country where the genome was sampled. The length of
the branch is proportional to the number of mutations (changes). This shows that, at that
time, there was limited genetic variation in the sampled viruses. This lack of diversity is
indicative of a relatively recent common ancestor for all these viruses. The tree was built with
the PhyML software, which implements a very efficient maximum-likelihood-based algorithm.

Source: virological.org/t/phylodynamic-analysis-176-genomes-6-mar-2020/356.

https://virological.org/t/phylodynamic-analysis-176-genomes-6-mar-2020/356
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originated and the pace at which it diffuses across space. Displaying spatial information at the tips
(the leaves) of the tree by coloring the corresponding sequences with their sampling locations, for
instance, is also tremendously helpful for deciphering the migration patterns underlying a pandemic.
One can, for example, quickly determine whether viral strains circulating in a given country all
descend from a single introduction event or from a succession of multiple introductions. Moreover,
these specific events can be dated, provided that the rate at which mutations accumulate is known
a priori, whereby “molecular times” (i.e., expected numbers of mutations) are translated into
“calendar times”. By combining phylogenetics and spatial information about the sampled genetic
sequences, elucidating the geographic origins of most viral clusters has become feasible, even by
non-specialists. This capability may explain the site’s rapid popularity gain at the end of 2019-early
in 2020. Note, however, that this tool does not display information about the uncertainty around
phylogenetic model parameter estimates, including ancestral geographical locations of the virus.
Given the low amount of genetic diversity displayed by SARS-CoV-2 sequences, combined with
potential ambiguities regarding the geographic origin of a given virion (a given individual infected
in China could have been “sampled” in Europe, for instance), ignoring this uncertainty can have
serious consequences.

• cov-lineages.org has also been widely used for determining the phylogenetic placement of
new SARS-CoV-2 strains. This approach relies on a backbone tree that comprises ∼30000 tips,
which serves as a basis to determine the phylogenetic position of a few new sequences. Since the
backbone tree is fixed, placing a new sequence within this tree is relatively fast, making the resource
an efficient diagnostic tool (e.g., determining the country of origin of a given strain is quick and
straightforward here).

Bibliographical sources on the use of phylogenetics to monitor the pandemic

[82] RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed mod-
els. A. Stamatakis, Bioinformatics, 22:2688–2690 (2006)

[83] New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. S. Guindon, J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. Systematic
Biology, 59(3):307–321 (2010)

[84] BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for
statistical phylogenetics. D. L. Ayres, M. P. Cummings, G. Baele, A. E. Darling, P. O. Lewis, D. L. Swofford,
J. P. Huelsenbeck, P. Lemey, A. Rambaut, and M. A. Suchard. Systematic Biology, 68(6):1052–1061, (2019)

[85] No detectable signal for ongoing genetic recombination in SARS-CoV-2. D. Richard, C. J. Owen, L. van
Dorp, and F. Balloux. bioRxiv (2020)

[86] Molecular evolution of human coronavirus genomes. D. Forni, R. Cagliani, M. Clerici, and M. Sironi. Trends
in microbiology, 25(1):35–48 (2017)

[87] Fasttree 2–approximately maximum-likelihood trees for large alignments. M. N. Price, P. S. Dehal, and
A. P. Arkin. PloS one, 5(3):e9490 (2010)

3.3 Tree generating models

Phylogenies convey much more information than the “simple” depiction of evolutionary relationships
between organisms. Inferred trees may indeed serve as data for inferring parameters that characterize
the demographic and epidemiological dynamics of a population. One can, for instance, estimate the so-
called effective population size from the ages of the internal nodes of the tree. The rationale behind the
concept of effective population size is relatively simple: the larger the viral population is, the further into
the past one has to travel to find common ancestors of viruses sampled in more recent times. This idea
is at the core of Kingman’s coalescent. This probabilistic model was later generalized to accommodate
for population sizes that may fluctuate over the course of evolution (in a deterministic fashion). It is

cov-lineages.org
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now commonplace to apply a coalescent model assuming an exponentially growing population size and
test whether its fit to the phylogeny is better than that provided by a constant-size coalescent model.

This type of approach was used at the end of 2020 to demonstrate that the growth of the British
variant B.1.1.7 population size in the UK was indeed exponential [81]. The exponential rate parameter
can easily be translated into an amount of time required for the population size to double, which is
an easy-to-interpret statistic that helps authorities evaluate the seriousness of a pandemic. Statistical
modeling based on phylogenetic data thus provides a relevant alternative to the standard approach, which
aims to infer a virus’s prevalence in a population. Indeed, compared to counting methods, the coalescent
is less sensitive to spatial and/or temporal variations of the sampling intensity. The coalescent, however,
is only relevant over time scales that authorize sufficient genetic polymorphism so that the node ages in
the phylogeny can be estimated accurately.

Other probabilistic tree-generating models, where lineages arise and die at rates that can be esti-
mated from phylogenies, are also relevant from an epidemiology point of view. In the context of virus
phylogenetics, these models assume that each branching event corresponds to a transmission event. The
end of a lineage (i.e., a tip in the tree) corresponds either to the infected individual’s death or recovery
(in one case or the other, the corresponding viral lineage disappears). Phylogenies of viruses are therefore
conceptually fairly remote from “standard” phylogenies where splits of lineages correspond to speciation
events and terminal nodes to extinction (or sampling) events [88]. Accurately estimating these birth and
death parameters when analyzing virus sequences is crucial since the ratio between the rate at which
lineages split and die is an estimate of the reproductive number [89]. The death parameter itself is closely
linked to the effective infection duration as it governs the expected duration of a lineage. For instance,
by analyzing about 200 sequences collected in the GISAID database, Danesh et al. (2020) [90] were able
to estimate that the median effective infection duration in France early in Spring 2020 was close to five
days.

Tree-generating models can therefore help extract relevant information about the dynamics of a
pandemic by analyzing genetic data from evolutionary trees. Nevertheless, the models presented above
are far from perfect when considered through the lens of epidemiology. For instance, the proportion
of susceptible individuals, i.e., the fraction of people that can potentially be infected, decreases as the
pandemic escalates [91, 92]. Yet, for the sake of mathematical simplicity, both Kingman’s coalescent and
the standard birth-death tree models ignore this information. Phylodynamics [93] is a new and active
research area that aims to circumvent these limitations and incorporate elements of epidemiology into
modern population genetics models, all of which rely on building evolutionary trees.

The standard models in epidemiology, stochastic or deterministic, rely on incidence data, i.e., the
number of new cases per time unit, to monitor the dynamics of an epidemic. As opposed to phylodynam-
ics, these models assume that all observations are independent of one another, which may be problematic.
Yet, this simplification authorizes the deployment of realistic models where the whole population may
be structured both spatially and according to compartments (typically, susceptible, infectious, and re-
covered). This level of sophistication may be incorporated into the phylodynamics framework at the
price of a high level of sophistication for evaluating the likelihood function [94, 95] (although see [96]
for an attempt to tackle this issue). Moreover, collecting incidence (or prevalence) data remains quicker
and less expensive than sampling the corresponding genetic sequences, and it is not always obvious why
complex phylodynamics analyses should be performed in situations where straightforward epidemiolog-
ical modeling suffices. Nonetheless, quantifying incidence strongly depends on the sampling intensity,
i.e., detected cases represent a fraction of actual cases, and this fraction may depend on multiple (time
and space-dependent) factors. Hence, both approaches have their strengths and weaknesses, and ongoing
research efforts are required to make the most sensible use of the data available.

Bibliographical sources on the use of tree-generating models to monitor the pandemic
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A few words of conclusion

Scientific research on COVID-19 was conducted at an unusually fast pace in 2020; these efforts were
indispensable for understanding and controlling the pandemic. In this race against time, bioinformatics
has played an essential role, hand in hand with biology and medicine. We have presented in this document
a brief tour of the state-of-the-art, illustrated by a selection of computational tools and methods that
contributed to the understanding of SARS-CoV-2. This survey is not intended to be exhaustive, and our
knowledge about SARS-CoV-2 is growing every day. For example, we did not mention third generation
sequencing, single-cell sequencing or the formation of RNA secondary structures. Nevertheless, this
report shows the maturity and the diversity of computational biology.

A point worth mentioning is that the bioinformatics community has a pioneering experience in open
science. This concerns the development of open source software with high technology readiness level.
This also concerns data collection, with numerous initiatives deployed for the development of open data
access and the definition of universal formats for data storing and sharing following the FAIR principles
(findability, accessibility, interoperability, and reusability). This intellectual and philosophical position
has played a crucial role in accelerating the research since the beginning of the crisis.

Our overview also shows the integrated nature of COVID-19 research, and the coherence of bioin-
formatics sub-disciplines. Computational methods for sequence analysis are key to establishing and
deciphering the genome of the virus. Phylogenetic studies play a central role in assessing the animal
reservoir of pathogens and tracking mutations. Understanding genetic variations prompts questions on
the structural biology side. In turn, a full qualification of interactions at the molecular level helps to refine
the parameterization of interactions at the systems biology level, with a direct bearing on medicine. A
matrix-like research effort (in the individual disciplines, but also in terms of integration) must therefore
be pursued to improve therapeutics and medical protocols, but also to develop insights into zoonosis.
We understand today that the fight against COVID-19 is a long journey. Long-term research efforts
are still required to build a more robust and detailed picture of this episode. Scientific innovation and
knowledge-building will be critical to help us face future challenges of the same sort.

doi.org/10.1371/journal.pcbi.1006546
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• Céline Scornavacca, DR CNRS, phylogeny and evolution

Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier,
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