Facilitating complex life science data integration and reuse

Olivier Dameron

Université de Rennes 1

06 November 2019

Life science data

O. Dameron 06 November 2019

(Big) data science

Data science [Naur1974, Cleveland2001]

Extracting knowledge from (un)structured data

- ullet Numeric data o statistics and deep learning
- Symbolic data → deductive reasoning, IA

Computerized data ⇒ Systematic and automatic data processing



Big data and the deluge of life science data

Big data

Datasets so **large** or **complex** that traditional data processing is inadequate [Laney2001]

Life science : data deluge [Aldhous1993]

- computerized biomedical data
- genomics and bioinformatics

Science. 1993 Oct 22;262(5133):502-3.

Managing the genome data deluge.

Aldhous P.

PMID: 8211171 [PubMed - indexed for MEDLINE]

Science. 1995 Aug 4;269(5224):630.

Europe opens institute to deal with gene data deluge.

Williams N.

PMID: 7624788 [PubMed - indexed for MEDLINE]

Bottleneck

Too much data for current processing capabilities

- data production rates outpace CPU improvements
- current analysis methods do not scale up

The Widening Gulf between Genomics Data Generation and Consumption: A Practical Guide to Big Data Transfer Technology

5 / 70

Frank A. Feltus¹, Joseph R. Breen III², Juan Deng³, Ryan S. Izard³, Christopher A. Konger⁴, Walter B. Ligon III³, Don Preuss⁵ and Kuang-Ching Wang³

BIOINFORMATICS AND BIOLOGY INSIGHTS 2015:9(S1)

O. Dameron 06 November 2019

What to expect for 2025?

Our estimation is that genomics is a "four-headed beast" – it is either on par with or the most demanding domain [...] in terms of

- data acquisition
- data storage
- data distribution

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbeli², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

data analysis

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

Acquisition 25 zetta-bytes/year 0.5–15 billion 500–900 million hours/year 1 zetta-bases/year tweets/year	
Storage 1 EB/year 1-17 PB/year 1-2 EB/year 2-40 EB/year	
Analysis In situ data reduction Topic and Limited requirements Heterogeneous data and analyse sentiment mining	ysis
Real-time processing Metadata analysis Variant calling, ~2 trillion centre processing unit (CPU) hours	al
Massive volumes All-pairs genome alignments, trillion CPU hours	~10,000
Distribution Dedicated lines from antennae 5 mall units of to server (600 TB/s) Small units of distribution Major component of modern user's Many small (10 MB/s) and few bandwidth (10 MB/s) (10 TB/s) data movement	er massive

doi:10.1371/journal.pbio.1002195.t001

Complexity of life science data : (1) multiple scales

Ecosystem

Organism

Organ

Cell

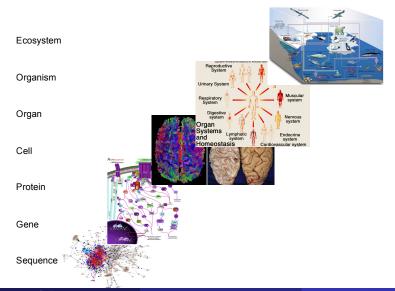
Protein

Gene

Sequence

GGGCGATCGGTGCGGGCCT AAGTTGGGTAACGCCAGGG GTACCCGGGGATCCTCTAGI TCCTGTGTGAAATTGTTAT CCTGGGGTGCCTAATGAGT

Complexity of life science data : (2) (explicit) interdependence at each level



Complexity of life science data : (3) scale (implicit) interdependence

Ecosystem

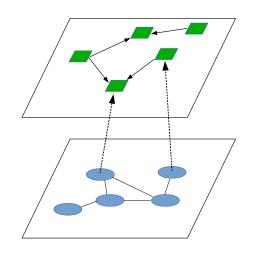
Organism

Organ

Cell

Protein

Gene



Complexity of life science data : (3) scale (implicit) interdependence

Ecosystem

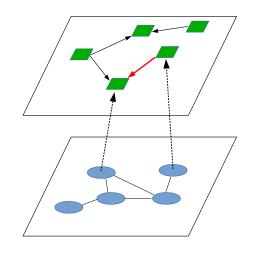
Organism

Organ

Cell

Protein

Gene



Complexity of life science data : (3) scale (implicit) interdependence

Ecosystem

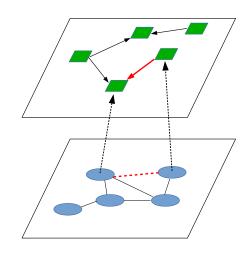
Organism

Organ

Cell

Protein

Gene



Complexity of life science data: (4) variability

Ecosystem

Organism

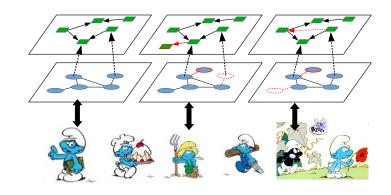
Organ

Cell

Protein

Gene

Sequence



O. Dameron 06

Complexity of life science data: (5) incompleteness

Ecosystem

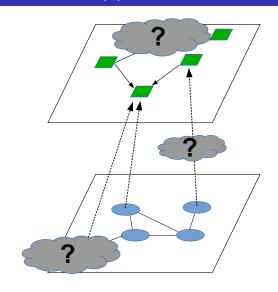
Organism

Organ

Cell

Protein

Gene



Complexity of life science data: (6) (fast) evolution

- items are added or modified
- items are deprecated
- cascade of dependencies requires to re-run all the experiments that depend on the modified element
 - directly
 - indirectly
- ... by transitivity all the experiments that depend on the results of the previous experiments

O. Dameron 06 November 2019

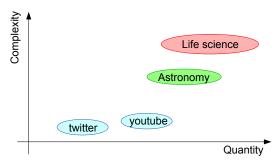
Complexity of life science data: (7) distributed

- 1500+ biological databases [Galperin2015]
- Lack of interoperability
- Some efforts of unified access (BioMart, InterMine...)

O. Dameron 06 November 2019

Degrees of data complexity

- multiple scales (heterogeneity)
- (highly) interdependent at each scale
- interdependent between scales
- variability
- incompleteness
- evolution
- distributed (and lack of interoperability)



O. Dameron

Complexity of life science data

Challenge (computational)

How to handle this complexity?

- Experts are very good at doing it on their domain (hint)
- The difficulty is to do it systematically
- Expertise = ability to use knowledge for interpreting data
- We should use their expertise, not try to outperform them

O. Dameron 06 November 2019

Capturing expertise with annotations

Annotation

Annotation = result of some interpretation process

O. Dameron 06 November 2019

Capturing expertise with annotations

Annotation

Annotation = result of some interpretation process

- ideally by an expert (from big data to smart data)
- usually requires some background knowledge
- formalisation ranging from free text to controlled vocabularies to (shared) semantic framework [semantic spectrum]

Using annotations for overcoming data complexity

Add annotations? But we have too much data already!

Benefits

- can be used as proxy to complex data
- simplifies by providing a compact abstraction
- overcomes variability
- enriches by making explicit the underlying meaning

Storing, sharing and reusing these annotations is the key to life science data systematic analysis

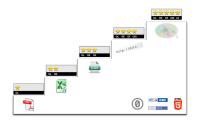
O. Dameron 06 November 2019

Linked data for representing and combining annotations

Relying on annotations and symbolic knowledge is not specific to life sciences

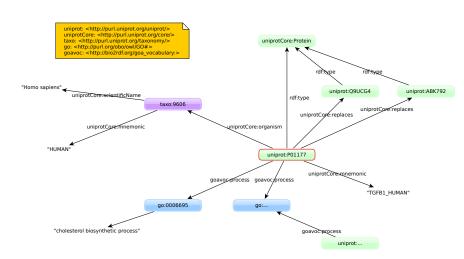
W3C: from the Web of documents to the Web of data

- distributed
- interoperable
- combinable
- compatible with automatic processing including reasoning



(Simplified) annotations for TGF- β 1 (uniprot :P01177)

Annotations are represented as (typed) relations between entities



Ontologies

Knowledge underlying annotations remains to be represented

- "Much of biology works by applying prior knowledge [...] to an unknown entity" [Stevens2000]
- "The complex biological data stored in bioinformatics databases often require the addition of knowledge to specify and constrain the values held in that database" [Stevens2000]

Ontology

Formal representation of knowledge in which the essential terms are combined with structuring rules that describe the relationships between them [Bard2004]

Available online at www.sciencedirect.com

acience dipinect*

Journal of Biomedical Informatics 39 (2006) 314-320

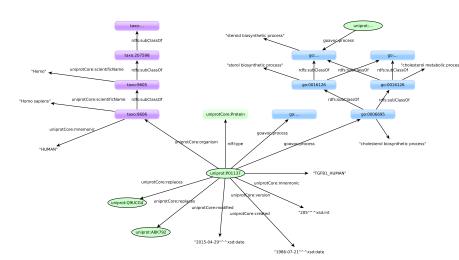
Brief Bioinform, 2000 Nov;1(4):398-414.

Ontology-based knowledge representation for bioinformatics. Stevens R¹, Gobie CA, Bechhofer S. Beyond the data deluge: Data integration and bio-ontologies

Judith A. Blake *, Carol J. Bult

Ontologies specify the meaning of annotations

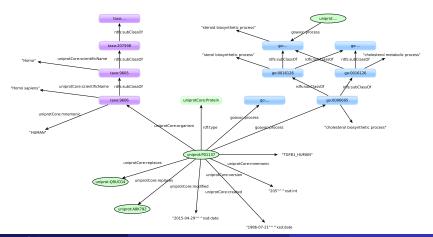
Knowledge is represented as relations between sets of entities



Ontologies support reasoning about annotations

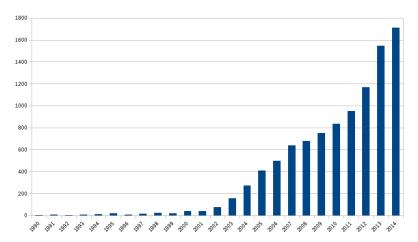
Reasoning

Method for traversing or enriching the graph of data



The ontology deluge (this is a good news!)

Number of PubMed articles mentionning "ontology"



Semantic Web and Linked (Open) Data

Semantic Web offers a unified framework to Linked Data

- RDF for representing and aggregating entities descriptions
- RDFS+OWL for representing domain knowledge (and combine it with data descriptions)
- SPARQL for querying everything (possibly from multiple repositories)

SPARQL endpoints offer unified query access to RDF repositories ex : Fuseki, Virtuoso,...

Linked Open Data: a federation of RDF repositories

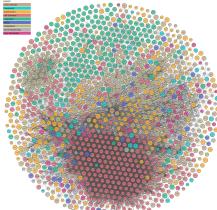
LODStats (http://lodstats.aksw.org/) [Ermilov2016]

- \bullet 9960 datasets; 149.10^9 triples
- general scope; Life sciences = major field (size+density)

O. Dameron 06 November 2019

Linked open data (in 2019-03-29)

- RDF repositories can be queried in SPARQL via endpoints
- data from one endpoint can make references to data from another endpoint



Linked open data cloud, by M. Schmachtenberg, C. Bizen, A. Jentzsch and R. Cyganiak http://lod-cloud.net/

Semantic Web

- general framework relevant for life sciences
- widely adopted by data scientists
- instrumental for future scientific breakthrough

Adoption challenge: Linked data are here... but still have to be adopted by end users

"Real" users

- do not contribute (yet) their data to the LOD cloud
- do not use the LOD cloud for analyzing their own data (yet)

IT challenges

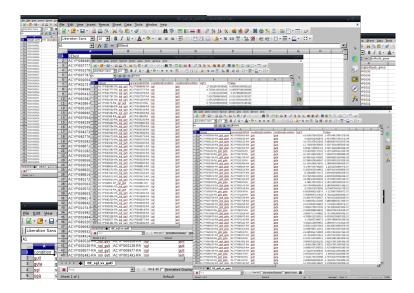
- complex and semantically-rich queries
- over multiple datasets
- containing complex data
- with acceptable response time

O. Dameron

Moving individual life science projects to the Semantic Web

O. Dameron 06 November 2019

End users project's data (aka death by spreadsheet)

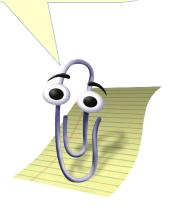


Death by spreadsheet : the worst is yet to come!

O. Dameron 06 November 2019

It looks like you are trying to do bioinformatics in Excel

Download AskOmics?



AskOmics: bridge btw domain experts and Semantic Web

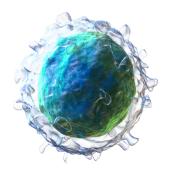
AskOmics is usefull for:

- Integrating data
- Querying data

Identifying regulators for B cells differentiation

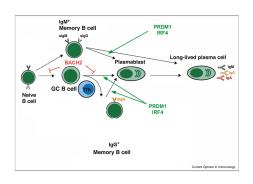
Collaboration with F. Chatonnet and T. Fest (INSERM U917 MicMac, CHU Rennes)

- Marine Louarn's M2 internship (January–June 2017)
- INSERM-INRIA PhD since October 2017



O. Dameron 06 November 2019

Context: Lymphocyte differentiation



- B cells differentiation into plasma cells: immune response.
- Memory B cells: faster differentiation, vaccine principle.
- Can we find the regulation candidates?

36 / 70

NBC differentiation [Phan]

We are looking for new genetic and epigenetic regulation candidates

O. Dameron 06 November 2019

Gene regulation

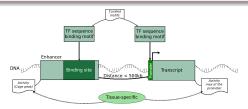
better understanding of

- cell differentiation
- cell identity
- cell function, adaptation and transformation

mediated by Transcription Factors that bind to either

- promoters
- enhancers

only works if the TF's binding site is in open 3D conformation



O. Dameron 06 November 2019

Gene regulatory networks

typed (induction or inhibition) relations btw a TF and a gene

- ENCODE
- FANTOM5
- RoadMap Epigenomics
- low compliance with FAIR guidelines
- reuse is difficult

O. Dameron 06 November 2019

The Regulatory Circuits project case study

http://regulatorycircuits.org

Nat Methods. 2016 Apr;13(4):366-70. doi: 10.1038/nmeth.3799. Epub 2016 Mar 7.

Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases.

Marbach D^{1,2}, Lamparter D^{1,2}, Quon G^{3,4}, Kellis M^{3,4}, Kutalik Z^{2,5}, Bergmann S^{1,2}.

Data

- heterogeneous and multi-layers "omics" data
- human patients cells from 394 tissues
- 59 files (6.6GB)

Output

• family of scored tissue-specific regulatory interaction networks

39 / 70

in text files

O. Dameron 06 November 2019

The Regulatory Circuits project case study

Method

- incomplete description in supplementary materials
- scripts and algorithms limited to the considered datasets

Limitations

- reproducibility of results
- maintenance/extension with new/additional data sources
- reuse of results for other studies

O. Dameron 06 November 2019

Objectives

Can the Regulatory Circuits data and workflow be modeled using Semantic Web technologies?

- identify the relevant files
- propose an RDF data structure
- populate a SPARQL endpoint
- represent the workflow as SPARQL queries

O. Dameron 06 November 2019

Regulatory Circuits dataset

- 14 input files
- 7 pre-processed intermediary files
- calculated networks (not used in this study)
 - 394 tissue-specific networks
 - 32 high level networks + 40 public networks

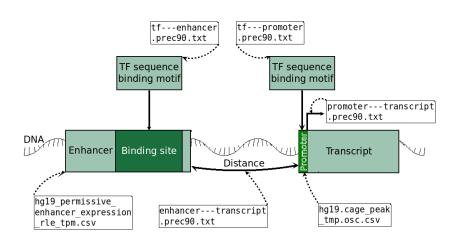
TSV text files

- from 184 to 124.358.159 lines
- 3 to 890 columns
- sometimes with headers (0, 1 or 3 lines)
- sometimes with comments (0, 893 or 1772 lines)

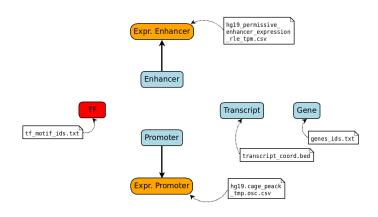
Difficult:

- Determine what is in each file and how are they related?
- 3 files were mis-formated (offset between columns and header)

Biological background helped to infer the relations between the data files

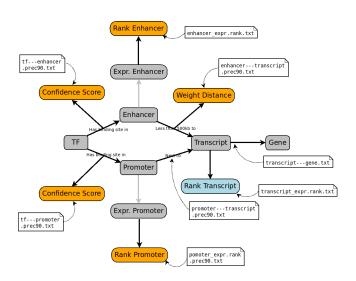


Entities

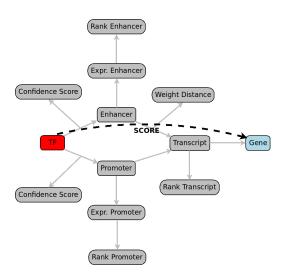


O. Dameron 06 November 2019

Add relations from intermediary files

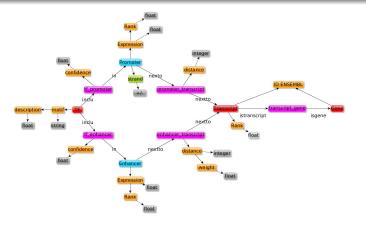


RC workflow for infering TF-genes relations



RDF data structure

- 3.226.341 entities
- 335.429.988 triples
- https://regulatorycircuits-rdf.genouest.org/sparql/



O. Dameron 06 November 2019

TF-gene relations through promoters (without score)

TF-gene relations through promoters (without score)

```
SELECT DISTINCT ?tf1 ?gene1
WHERE {
 ?tf1 rdf:type user:tf.
  ?tf_promoter1 rdf:type user:tf_promoter.
 ?tf_promoter1 askomics:confidence ?confidence1.
 FILTER ( ?confidence1 > 0 ).
  ?promoter1 rdf:type user:promoter.
 ?promoter1 askomics:Rank_CNhs12017 ?Rank_CNhs12017P.
 FILTER ( ?Rank CNhs12017P > 0 ).
  ?promoter_transcript1 rdf:type user:promoter_transcript.
  ?transcript1 rdf:type user:transcript.
  ?transcript_gene1 rdf:type user:transcript_gene.
 ?gene1 rdf:type user:gene.
 ?tf_promoter1 askomics:inclu ?tf1.
  ?tf_promoter1 askomics:in ?promoter1.
 ?promoter_transcript1 askomics:nextto ?promoter1.
  ?promoter_transcript1 askomics:nextto ?transcript1.
 ?transcript_gene1 askomics:istranscript ?transcript1.
  ?transcript_gene1 askomics:isgene ?gene1.
ORDER BY ?tf1 ?gene1
```

O. Dameron 06 November 2019

TF-gene relations through promoters (with score)

```
SELECT DISTINCT ?tf1 ?gene1 (max(xsd:float(?confidence1) *
    xsd:float(?confidence1) * xsd:float(?Rank CNhs12017P) *
    xsd:float(?Rank_CNhs12017P)) AS ?weightP)
WHERE {
  ?tf1 rdf:type user:tf.
 ?tf_promoter1 rdf:type user:tf_promoter.
 ?tf_promoter1 askomics:confidence ?confidence1.
 FILTER ( ?confidence1 > 0 ).
 ?promoter1 rdf:type user:promoter.
  ?promoter1 askomics:Rank_CNhs12017 ?Rank_CNhs12017P.
 FILTER ( ?Rank CNhs12017P > 0 ).
  ?promoter_transcript1 rdf:type user:promoter_transcript.
  ?transcript1 rdf:type user:transcript.
  ?transcript_gene1 rdf:type user:transcript_gene.
 ?gene1 rdf:type user:gene.
 ?tf_promoter1 askomics:inclu ?tf1.
  ?tf_promoter1 askomics:in ?promoter1.
  ?promoter_transcript1 askomics:nextto ?promoter1.
  ?promoter_transcript1 askomics:nextto ?transcript1.
 ?transcript_gene1 askomics:istranscript ?transcript1.
  ?transcript_gene1 askomics:isgene ?gene1.
GROUP BY ?tf1 ?gene1
```

TF-gene relations through enhancers (without score)

```
SELECT DISTINCT ?tf1 ?gene1
WHERE {
 ?tf1 rdf:type user:tf.
  ?tf enhancer1 rdf:type user:tf enhancer.
  ?tf enhancer1 askomics:confidence ?confidence1.
 FILTER ( ?confidence1 > 0 ).
  ?enhancer1 rdf:type user:enhancer.
  ?enhancer1 askomics:Rank CNhs12017 ?Rank CNhs12017E.
 FILTER ( ?Rank CNhs12017E > 0 ).
  ?enhancer_transcript1 rdf:type user:enhancer_transcript.
  ?enhancer transcript1 askomics:weight ?weight1.
 FILTER ( ?weight1 > 0 ).
 ?transcript1 rdf:type user:transcript.
  ?transcript1 askomics:CNhs12017 ?CNhs12017T.
 FILTER ( ?CNhs12017T > 0 ).
  ?transcript_gene1 rdf:type user:transcript_gene.
  ?gene1 rdf:type user:gene.
  ?tf enhancer1 askomics:inclu ?tf1.
  ?tf_enhancer1 askomics:in ?enhancer1.
  ?enhancer_transcript1 askomics:nextto ?enhancer1.
  ?enhancer transcript1 askomics:nextto ?transcript1.
  ?transcript_gene1 askomics:istranscript ?transcript1.
  ?transcript_gene1 askomics:isgene ?gene1.
ORDER BY ?tf1 ?gene1
```

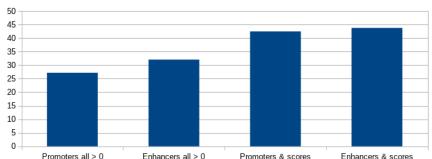
O. Dameron 06 November 2019

TF-gene relations through enhancers (with score)

```
SELECT DISTINCT ?tf1 ?gene1 (max(xsd:float(?confidence1) *
 xsd:float(?confidence1) * xsd:float(?weight1)*
 xsd:float(?weight1) * xsd:float(?CNhs12017T) *
 xsd:float(?Rank CNhs12017E) ) AS ?weightE)
WHERE {
  ?tf1 rdf:type user:tf.
  ?tf_enhancer1 rdf:type user:tf_enhancer.
  ?tf enhancer1 askomics:confidence ?confidence1.
 FILTER ( ?confidence1 > 0 ).
  ?enhancer1 rdf:type user:enhancer.
  ?enhancer1 askomics:Rank CNhs12017 ?Rank CNhs12017E.
 FILTER ( ?Rank CNhs12017E > 0 ).
  ?enhancer_transcript1 rdf:type user:enhancer_transcript.
  ?enhancer transcript1 askomics:weight ?weight1.
 FILTER ( ?weight1 > 0 ).
  ?transcript1 rdf:type user:transcript.
  ?transcript1 askomics:CNhs12017 ?CNhs12017T.
 FILTER ( ?CNhs12017T > 0 ).
  ?transcript_gene1 rdf:type user:transcript_gene.
  ?gene1 rdf:type user:gene.
  ?tf enhancer1 askomics:inclu ?tf1.
  ?tf_enhancer1 askomics:in ?enhancer1.
 ?enhancer_transcript1 askomics:nextto ?enhancer1.
  ?enhancer transcript1 askomics:nextto ?transcript1.
  ?transcript_gene1 askomics:istranscript ?transcript1.
  ?transcript_gene1 askomics:isgene ?gene1.
GROUP BY ?tf1 ?gene1
ORDER BY ?tf1 ?gene1
```

Performances

(average for the 808 samples)



O. Dameron

06 November 2019

We replaced their whole workflow by 2 SPARQL queries

Semantic Web technologies are extensively used for supporting knowledge base interoperability and reusability

Semantic Web technologies are also relevant for original studies

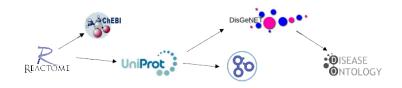
- improve results reproducibility
- improve results updates
- improve results reuse in other studies

O. Dameron 06 November 2019

Improve federated query processing

O. Dameron 06 November 2019

Improve federated queries processing



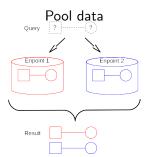
Challenge

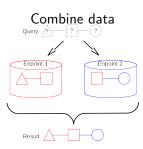
Poor performances recognized as a major bottleneck [Bairoch2016]

O. Dameron 06 November 2019

Federated queries principle

- Linked data
 - RDF repositories can be queried in SPARQL via endpoints
 - data_{endpoint1} can make references to data_{endpoint2}
- Federated queries span several endpoints
 - SPARQL engine propagates the query and merges the results
 - good news : supported by SPARQL language + query engines
 - not so good news : performances :-(

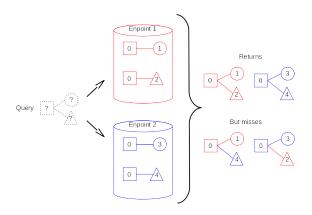




57 / 70

O. Dameron 06 November 2019

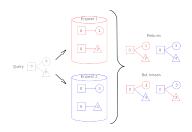
Federated queries difficulty: endpoints not independent



Treating the endpoints independently fails when combining data

O. Dameron 06 November 2019

Federated queries difficulty: endpoints can not be merged

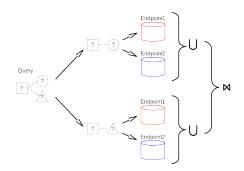


Merging the endpoints is not a viable solution either

- each endpoint is potentially big
- merging
 - increases network traffic
 - increases storage consumption
 - decreases query answering performances
 - does not scale up to LOD

O. Dameron 06 November 2019

Federated queries: q. fragmentation increases complexity



Sending each triple to each endpoint results in

- many subqueries for each endpoint (distant server overload)
- many unions and joins (local engine overload)
- potential transfer of large quantities of data before performing the joins, even if it ultimately few results (network overload)

O. Dameron 06 November 2019

Processing federated queries: general approach

Decompose the query into fragments

The fewer fragments the better: reduces joins

s. selection for each fragment, select the relevant endpoints

The fewer endpoints the better (but no false negatives!) : reduces joins

Determine the order for processing the fragments (q. planning)

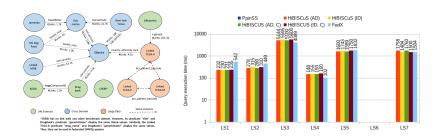
Start by the most selectives, maybe parallelize, and potentially rewrite the subqueries

These three aspects can be inter-dependent

O. Dameron 06 November 2019

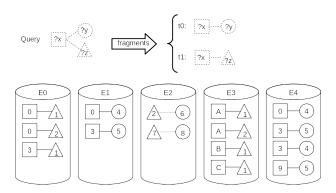
Federated queries: the LargeRDFBench benchmark

- 13 datasets; $> 10^9$ triples
- 40 queries, including 7 related to Life sciences
- Both FedX and HiBISCuS timeout for LS6



06 November 2019

Source selection



Naive approach

Structure

8 unions + 1 join 2 unions + 1 join 1 union + 1 join

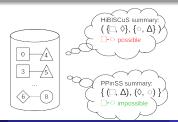
Structure + content

Endpoint summaries in FederatedQueryScaler

Similar to HiBISCuS, our summaries associate the relations with patterns of the subjects and the objects identifiers

Our summaries:

- use richer patterns of identifiers
 - (-) take longer to compute
 - (-) use more memory
 - (+) are more discriminant
- can capture identifiers patterns coupling with sets of pairs of patterns (instead of pairs of sets of patterns)



Evaluation

We compared:

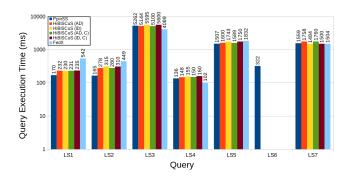
- FedX (no index)
- HiBISCuS (index based on pairs of sets of simple patterns)
- PPinSS: HiBISCuS with our summary-based source selection

We used:

- 13 endpoints (total $> 10^9$ triples)
- the 7 life science queries among the 32 from the LargeRDFBench benchmark
- Our index was larger than HiBISCuS' but remained acceptable (27Mb)
- We selected fewer sources (30) than HiBISCuS (43) and FedX (56)
- Our source selection was faster (215ms) than HiBISCuS (400ms) and FedX (720ms)

O. Dameron 06 November 2019

Results source selection : overall query result



Determining more accurately the relevant sources allowed us to compute the queries' results as fast or faster than HiBISCuS and ${\sf FedX}$

O. Dameron 06 November 2019

Perspectives

O. Dameron

Life science is an **ideal domain** for developing **generic solutions**

Develop new data analysis methods

- challenges at each complexity level
- by simplifying intrinsic complexity, we probably miss some connections
 - currently: monomodal preprocessing before integration and reasoning
 - ignores the underlying biological dependencies

Address the computational challenges

Adapt data management

O. Dameron 06 November 2019

Life science is an **ideal domain** for developing **generic solutions**

Develop new data analysis methods

Address the computational challenges

- query performances
 - at the endpoint level
 - for federate queries
- symbolic annotations and SW provide a relevant framework, but will it be enough?

Adapt data management

O. Dameron 06 November 2019

Life science is an **ideal domain** for developing **generic solutions**

Develop new data analysis methods

Address the computational challenges

Adapt data management

- adoption by end-users
- workflows
- quality and reproducibility

O. Dameron 06 November 2019