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RNA structure

RNA = sequence of
A,U,G,C

secondary structure =
hydrogen bonds
A− U, G− C
(Watson-Crick)
G− U (Wobble)

6

works in the recent years. One reason is that it is much easier to know the
secondary structure of a RNA molecule, by experimental biology as well as by
computer prediction, than its tertiary structure. Another reason is that there
exists a well known one-to-one correspondence between arc-annotated sequences
and a particular family of trees, and comparison of trees is a well studied topic.
Indeed, any nested arc-annotated sequence can be modeled by a labelled ordered
tree [47, 39], where each inner node corresponds to a basepair (i.e. two bases
with an arc between them), and each leaf corresponds to an unpaired base. The
transformation algorithm, of linear complexity, is quite simple [18]. Figure 3
shows an example of an arc-annotated sequence and its corresponding tree. The
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Fig. 3. A nested arc-annotated sequence (top) its classical drawing (left) and its cor-
responding labelled ordered tree (right).

classical edition operations for comparing trees are the following:

– node-substitution: the label of a node is changed,
– node-deletion: a node is deleted, and its children become the children of its

former parent.

Given these operations, one can define, as in the case of arc-annotated sequences,
a partial order relation between trees, and then consider the alignment problem
and the edition problem. It turns out that these two problems are not equiv-
alent for trees. Meanwhile, both can be solved in polynomial time by dynamic
programming algorithms. The first efficient edition algorithm for ordered rooted
trees is due to Zhang and Shasha [46]. It runs in O(n2m2) worst-case complexity,
and in O(n3/2m3/2) average-case complexity [10], where n and m stand for the
numbers of nodes of the two trees, respectively. Some authors have given variants
of the algorithm which improve the worst-case complexity [11, 23]. Alignment of
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Energy model (Turner) : sequence w , folded in structure S
→ E(w ,S)
Hypothesis : w folds into S∗ minimizing E(w ,S)
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Biological motivation : Exon Splicing Enhancer

In mRNA : binding site, target
for splicing

Q: Influence of structural
context?

given structure S
ESEi = AGAACU
required at specific position

ESEj 6=i
forbidden
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Formalisation : structure

one structure = a well-parenthesized word on {(, ), •, }

Building the grammar

Input: Secondary Structure S + Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

. ( ( ( . ) ) ( . . ) )

1 5 10 12

Yann Ponty (CNRS/Polytechnique, France) Flexible RNA design Sept. 22th – AMC-BCB’13 13 / 21
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Formalisation : folding and design

E(w ,S) = free energy of w folded into S

Problem : Folding
Data: Sequence w
Result: MFE(w), set of structures minimizing E(w ,S)

Problem : Inverse folding or Negative design
Data: Secondary structure S
Result: Sequence w such that MFE(s) = {S} if such a
sequence exists, ∅ otherwise.

Unknown complexty (NP-hard?).
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Formalisation : constraints

Need to include constraints :
Forbidden patterns. Example : "ESEj mustn’t appear"
Mandatory patterns. Example : "CAAU must appear at
least once"
Positional constraints. Example : "At position 27 only A
or G allowed" or "positions 3-9 ESEi "

Other objective : finding sequences which folding is "near"
to S

Vincent Le Gallic RNA Design with constraints 7/28



Formalisation : design with constraints

Problem : Design with constraints
Data:

structure S (|S| = n)
set of forbidden patterns F
set of mandatory patternsM
positional constraints PC = {(i ,Ci)/i ∈ J1,nK,Ci ⊆ Σ}

Result: Sequence w such that
w is compatible with S
∀f ∈ F , f � s
∀m ∈M,m � s
∀i ∈ J1,nK,wi ∈ Ci

or ∅ if no sequence fulfill these constraints

(u � v means u factor of v )
Vincent Le Gallic RNA Design with constraints 8/28



Previous algorithms : classification

Stochastic search :
RNAInverse

. . . + divide and conquer :
RNA-SSD

INFO-RNA

NUPack

Random generation :
RNAensign

IncaRNAtion

Genetic algorithms :
FRNAKenstein

RNAExInv

Exact algorithms :
RNAiFold

CO4

Only one handles forbidden
patterns : NUPack

Vincent Le Gallic RNA Design with constraints 9/28



Previous algorithms : classification

Stochastic search :
RNAInverse

. . . + divide and conquer :
RNA-SSD

INFO-RNA

NUPack

Random generation :
RNAensign

IncaRNAtion

Genetic algorithms :
FRNAKenstein

RNAExInv

Exact algorithms :
RNAiFold

CO4

Only one handles forbidden
patterns : NUPack

Vincent Le Gallic RNA Design with constraints 9/28



Zhou et al. approach

Zhou et al. (2013) introduce CFGRNAD :

Define L = sequences compatible with S and the
constraints
Random generation in L (dynamic programming)

counting
generating

Fold each candidate to check if it folds into S

Goal : optimize the counting and generating steps of this
method

Vincent Le Gallic RNA Design with constraints 10/28



Zhou et al. : grammar

Building the grammar

Input: Secondary Structure S + Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

. ( ( ( . ) ) ( . . ) )

1 5 10 12

S1

S2

S3
S4

S5

S8

S9
S10

Yann Ponty (CNRS/Polytechnique, France) Flexible RNA design Sept. 22th – AMC-BCB’13 13 / 21

S1 → •S2 S4 → (S5) S8 → (S9)

S2 → (S3) S5 → • S9 → •S10

S3 → (S4)S8 S10 → •

Vincent Le Gallic RNA Design with constraints 11/28



Zhou et al. : actual grammar

Full development of GS :
• −→ base A,U,G,C
( . . . ) −→ pair {A,U}, {G,C}, {G,U}

S1 → aS2 | uS2 | gS2 | cS2
S2 → aS3u | uS3a | gS3c | cS3g | gS3u | uS3g

. . .
S5 → a | u | g | c

. . .

Recognized language = all sequences compatible with S
with C2 = {A,G,C}
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Forbidden words : Aho-Corasick automaton

ε A AC

ACU

ACG ACGG

G GG

A

U,C

G

C

G

G

U

G

Automaton AF for F = {ACU,ACGG,GG}
pictured with failure transitions
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Mandatory patterns

Figure 1: Automaton AM forM = {AGC,GG}
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Automaton forbidden + mandatory

AF ,M = AF ×AM

|QF ,M| ∈ O

(
2|M|

(∑
f∈F

|f |+
∑

m∈M
|m|

))

structural + positional constraints↔ GS

forbidden and mandatory patterns↔ AF ,M
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Complexity

context-free ∩ regular = context-free

S → TU
↓

Sq,q′′ → Tq,q′Uq′,q′′ q q′ q′′

S

T U

w1 w2

|GG×A| = |G| · |A|3

= n · |QF ,M|3
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Complexity of generation with mandatory patterns

Complexity in O(2|M|)

Awaited: it’s impossible to do "better"

Superstring Problem

Data: Set {u1, . . . ,uk} of words on Σ and ` ∈ N
Result : "True" if it exists u such that ∀i ∈ J1, kK,ui � u, et
|u| 6 `, "False" otherwise

This problem is NP-complete (cf Maier et al. (1977))
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Superstring NP-hard⇒ Design NP-hard

S = • • · · · • of length `
F = ∅
M = {u1, . . . ,uk}

Then Superstring ≺ pre-Design

 no hope Design with constraints ∈ Poly(|M|)

Vincent Le Gallic RNA Design with constraints 19/28



Pattern once and only once

Weakness of Zhou et al. approach:
How to enforce a pattern umf only at position iumf and nowhere
else?

use GS ?
AF ,M forbids umf  LGS ∩ LAF,M = ∅
use AF ,M ?
|QF ,M| ∈ Ω(n) complexity in O(n|QF ,M|3) = O(n4)

=⇒ method in O(n|QF ,M|3) where Q depends on F andM,
but not n
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Dynamic programming : idea

C(i , j ,q,q′′) = number of words w compatible with S[i,j] such
that q w→ q′′ ∈ δ∗F ,M

( ( ( ( ( . . . ) ) ) ) )

i j
q q′′

C(i , j ,q,q′′) needed for random generation

Vincent Le Gallic RNA Design with constraints 21/28



Dynamic programming : method

Computing C(i , j ,q,q′′) :

i i+1 j

choose a ∈ Σ
compute C(i + 1, j ,qafter,q′′) where q a→ qafter ∈ δF,M

i k j

choose a,b ∈ Σ
choose q′ ∈ Q
compute C(i + 1, k − 1,qa1,q′) where q a→ qa1 ∈ δF,M

compute C(k + 1, j ,qa2,q′′) where q′ b→ qa2 ∈ δF,M

Vincent Le Gallic RNA Design with constraints 22/28



Dynamic programming : recurrence relations

S[i,i−1] = ε

C(i , i − 1,q,q′′) =

{
1 if q = q′′

0 otherwise

S[i,j] = •S[i+j,j]

C(i , j ,q,q′′) =
∑
a∈Ci


0 if δ(q,a) ∈ F
0 if δ(q,a) = umf and i − (|umf | − 1) 6= iumf

C(i + 1, j , δ(q,a),q′′) otherwise

S[i,j] = (S[i+1,k−1])S[k+1,j]

C(i , j ,q,q′′) =
∑

(a,b)∈Ci×Cj
q′∈Q


0 if δ(q,a) ∈ F ou δ(q′,b) ∈ F
0 if δ(q,a) = umf and i − (|umf | − 1) 6= iumf

0 if δ(q′,b) = umf and k − (|umf | − 1) 6= iumf

C(i + 1, k − 1, δ(q,a),q′) · C(k + 1, j , δ(q′,b),q′′) otherwise

Vincent Le Gallic RNA Design with constraints 23/28



Speed enhancement

CFGRNAD tests
every (q,q′′) ∈ Q2

every q′ ∈ Q
 O(|Q|3)

q q′ q′′

S

T U

w1 w2

But:
accessible/co-accessible ?
non-terminal→ fixed-length words

 most (q,q′,q′′), even (q,q′′), are irrelevant

Vincent Le Gallic RNA Design with constraints 24/28



Speed enhancement: method

Optimisation : pre-compute triplets (q,q′,q′′) such that there is
a path q →∗ q′ →∗ q′′ in AF ,M.

q →n1 q′ →n2 q′′ :
q →n1+n2 q′′ ∈ δ∗F ,M
q →n1 q′ ∈ δ∗F ,M et q′ →n2 q′′ ∈ δ∗F ,M

Vincent Le Gallic RNA Design with constraints 25/28



Speed enhancement : preliminary results
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Better algorithmic complexity ?
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Open questions

AF ,M optimal in general?
(minimizing is costly, problems with prog. dyn.)
folding of w into S not guaranteed enforce a bias in the
random generation
characterize families of automatons with whom complexity
in O(n · |Q|p),p < 3

Vincent Le Gallic RNA Design with constraints 27/28



Thank you for your attention
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