Algorithmics results for RNA design with sequence constraints

Vincent LE GALLIC Alain DENISE Yann PONTY

LRI

25/11/2015

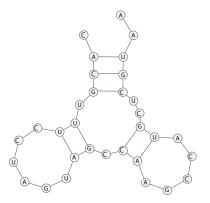
- Problem formalisation
- 3 Zhou et al. approach

Contributions

- Complexity of generation with mandatory patterns
- Dynamic programming to enforce one occurrence of a pattern
- Speed enhancement

RNA = sequence of A, U, G, C

secondary structure = hydrogen bonds A - U, G - C(Watson-Crick) G - U (Wobble)



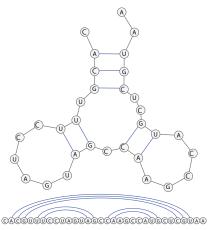
RNA = sequence of A, U, G, C

secondary structure = hydrogen bonds A - U, G - C(Watson-Crick) G - U (Wobble)



RNA = sequence of A, U, G, C

secondary structure = hydrogen bonds A - U, G - C(Watson-Crick) G - U (Wobble)

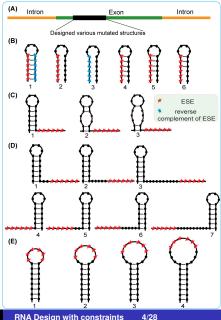


Energy model (Turner) : sequence *w*, folded in structure $S \rightarrow E(w, S)$ Hypothesis : *w* folds into S^* minimizing E(w, S)

Biological motivation : Exon Splicing Enhancer

In mRNA : binding site, target for splicing

Q: Influence of structural context?



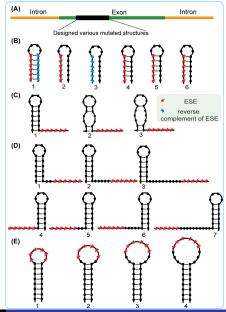
Biological motivation : Exon Splicing Enhancer

In mRNA : binding site, target for splicing

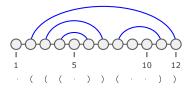
Q: Influence of structural context?

given structure SESE_i = AGAACU required at specific position

ESE_{j≠i} forbidden



one structure = a well-parenthesized word on $\{(,), \bullet, \}$



E(w, S) = free energy of w folded into S

Problem : Folding

Data: Sequence w**Result:** MFE(w), set of structures minimizing E(w, S)

Problem : Inverse folding or Negative design

Data: Secondary structure *S* **Result:** Sequence *w* such that $MFE(s) = \{S\}$ if such a sequence exists, \emptyset otherwise.

Unknown complexty (NP-hard?).

Need to include constraints :

- Forbidden patterns. Example : "ESE_j mustn't appear"
- Mandatory patterns. Example : "CAAU must appear at least once"
- Positional constraints. Example : "At position 27 only A or G allowed" or "positions 3-9 ESE;"
- Other objective : finding sequences which folding is "near" to S

Problem : Design with constraints

Data:

- structure S(|S| = n)
- set of forbidden patterns ${\cal F}$
- $\bullet\,$ set of mandatory patterns ${\cal M}\,$
- positional constraints $PC = \{(i, C_i) / i \in [[1, n]], C_i \subseteq \Sigma\}$

Result: Sequence w such that

• w is compatible with S

•
$$\forall f \in \mathcal{F}, f \not\preceq s$$

- $\forall m \in \mathcal{M}, m \preceq s$
- ∀*i* ∈ [[1, *n*]], *w_i* ∈ *C_i*

or $\ensuremath{\varnothing}$ if no sequence fulfill these constraints

$$(u \leq v \text{ means } u \text{ factor of } v)$$

Previous algorithms : classification

Stochastic search :

- RNAInverse
- ... + divide and conquer :
 - RNA-SSD
 - INFO-RNA
 - NUPack

Random generation :

- RNAensign
- IncaRNAtion

Genetic algorithms :

- FRNAKenstein
- RNAExInv
- Exact algorithms :
 - RNAiFold
 - CO4

Previous algorithms : classification

Stochastic search :

- RNAInverse
- ... + divide and conquer :
 - RNA-SSD
 - INFO-RNA
 - NUPack

Random generation :

- RNAensign
- IncaRNAtion

Genetic algorithms :

- FRNAKenstein
- RNAExInv
- Exact algorithms :
 - RNAiFold
 - CO4

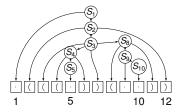
Only one handles forbidden patterns : NUPack

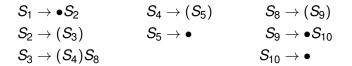
Zhou et al. (2013) introduce CFGRNAD :

- Define \mathcal{L} = sequences compatible with *S* and the constraints
- Random generation in L (dynamic programming)
 - counting
 - generating
- Fold each candidate to check if it folds into S

Goal : optimize the counting and generating steps of this method

Zhou et al. : grammar





Full development of
$$\mathcal{G}_{\mathcal{S}}$$
:
• \longrightarrow base A, U, G, C
(...) \longrightarrow pair {A, U}, {G, C}, {G, U}

$$\begin{array}{rcl} S_1 & \rightarrow & aS_2 \mid uS_2 \mid gS_2 \mid cS_2 \\ S_2 & \rightarrow & aS_3u \mid uS_3a \mid gS_3c \mid cS_3g \mid gS_3u \mid uS_3g \\ & & \\ S_5 & \rightarrow & a \mid u \mid g \mid c \\ & & \\ & & \\ \end{array}$$

Recognized language = all sequences compatible with S

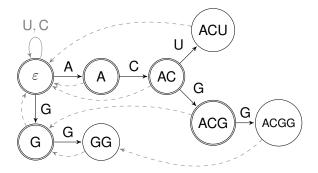
. . .

$$\begin{array}{l} \mbox{Full development of \mathcal{G}_S:} \\ \bullet \longrightarrow base \ A, U, G, C \\ (\ \ldots \) \longrightarrow pair \ \{A, U\}, \{G, C\}, \{G, U\} \end{array}$$

$$\begin{array}{rcl} S_1 & \rightarrow & aS_2 \mid uS_2 \mid gS_2 \mid cS_2 \\ S_2 & \rightarrow & aS_3u \mid uS_3a \mid gS_3c \mid cS_3g \mid gS_3u \mid uS_3g \\ & & \\ S_5 & \rightarrow & a \mid u \mid g \mid c \end{array}$$

Recognized language = all sequences compatible with S with $C_2 = \{A, G, C\}$

Forbidden words : Aho-Corasick automaton



Automaton $\mathcal{A}_{\mathcal{F}}$ for $\mathcal{F} = \{ACU, ACGG, GG\}$ pictured with *failure transitions*

Mandatory patterns

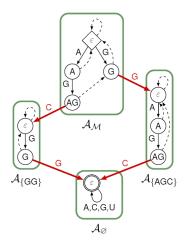
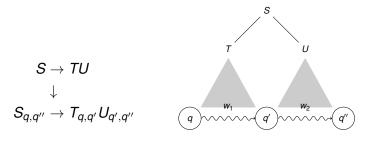


Figure 1: Automaton $\mathcal{A}_{\mathcal{M}}$ for $\mathcal{M} = \{AGC, GG\}$

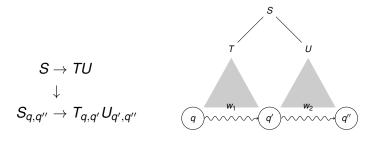
- structural + positional constraints $\leftrightarrow \mathcal{G}_S$
- forbidden and mandatory patterns $\leftrightarrow \mathcal{A}_{\mathcal{F},\mathcal{M}}$

context-free \cap regular = context-free



$$|\mathcal{G}_{\mathcal{G} imes \mathcal{A}}| = |\mathcal{G}| \cdot |\mathcal{A}|^3$$

context-free \cap regular = context-free



$$|\mathcal{G}_{\mathcal{G} imes \mathcal{A}}| = |\mathcal{G}| \cdot |\mathcal{A}|^3 = n \cdot |\mathcal{Q}_{\mathcal{F}, \mathcal{M}}|^3$$

- Problem formalisation
- 3 Zhou et al. approach

4 Contributions

- Complexity of generation with mandatory patterns
- Dynamic programming to enforce one occurrence of a pattern
- Speed enhancement

Open questions

Complexity of generation with mandatory patterns

Complexity in $O(2^{|\mathcal{M}|})$

Awaited: it's impossible to do "better"

Complexity of generation with mandatory patterns

```
Complexity in O(2^{|\mathcal{M}|})
```

Awaited: it's impossible to do "better"

Superstring Problem

Data: Set $\{u_1, \ldots, u_k\}$ of words on Σ and $\ell \in \mathbb{N}$ **Result :** "True" if it exists *u* such that $\forall i \in \llbracket 1, k \rrbracket, u_i \leq u$, et $|u| \leq \ell$, "False" otherwise

This problem is NP-complete (cf Maier et al. (1977))

- $S = \bullet \bullet \cdots \bullet$ of length ℓ
- $\mathcal{F} = \emptyset$
- $\mathcal{M} = \{u_1, \ldots, u_k\}$

Then Superstring < pre-Design

\rightsquigarrow no hope **Design with constraints** \in Poly($|\mathcal{M}|$)

Weakness of Zhou et al. approach:

How to enforce a pattern u_{mf} only at position $i_{u_{mf}}$ and nowhere else?

- use \mathcal{G}_{S} ? $\mathcal{A}_{\mathcal{F},\mathcal{M}}$ forbids $u_{mf} \rightsquigarrow \mathcal{L}_{\mathcal{G}_{S}} \cap \mathcal{L}_{\mathcal{A}_{\mathcal{F},\mathcal{M}}} = \emptyset$
- use $\mathcal{A}_{\mathcal{F},\mathcal{M}}$? $|Q_{\mathcal{F},\mathcal{M}}| \in \Omega(n) \rightsquigarrow \text{ complexity in } O(n|Q_{\mathcal{F},\mathcal{M}}|^3) = O(n^4)$

Weakness of Zhou et al. approach:

How to enforce a pattern u_{mf} only at position $i_{u_{mf}}$ and nowhere else?

- use \mathcal{G}_{S} ? $\mathcal{A}_{\mathcal{F},\mathcal{M}}$ forbids $u_{mf} \rightsquigarrow \mathcal{L}_{\mathcal{G}_{S}} \cap \mathcal{L}_{\mathcal{A}_{\mathcal{F},\mathcal{M}}} = \emptyset$
- use $\mathcal{A}_{\mathcal{F},\mathcal{M}}$? $|\mathcal{Q}_{\mathcal{F},\mathcal{M}}| \in \Omega(n) \rightsquigarrow \text{ complexity in } O(n|\mathcal{Q}_{\mathcal{F},\mathcal{M}}|^3) = O(n^4)$

 \implies method in $O(n|Q_{\mathcal{F},\mathcal{M}}|^3)$ where Q depends on \mathcal{F} and \mathcal{M} , but not n

C(i, j, q, q'') = number of words *w* compatible with $S_{[i,j]}$ such that $q \stackrel{w}{\to} q'' \in \delta^*_{\mathcal{F},\mathcal{M}}$

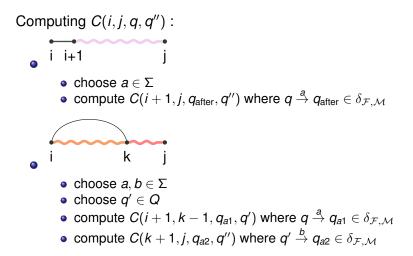
$$((((((\cdots)))))))$$

$$i \qquad j$$

$$q \qquad q''$$

C(i, j, q, q'') needed for random generation

Dynamic programming : method

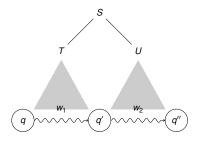


Dynamic programming : recurrence relations

•
$$S_{[i,i-1]} = \varepsilon$$

 $C(i, i - 1, q, q'') = \begin{cases} 1 & \text{if } q = q'' \\ 0 & \text{otherwise} \end{cases}$
• $S_{[i,j]} = \bullet S_{[i+j,j]}$
 $C(i, j, q, q'') = \sum_{a \in C_i} \begin{cases} 0 & \text{if } \delta(q, a) \in \mathcal{F} \\ 0 & \text{if } \delta(q, a) = u_{mf} \text{ and } i - (|u_{mf}| - 1) \neq i_{u_{mf}} \end{cases}$
• $S_{[i,j]} = (S_{[i+1,k-1]})S_{[k+1,j]}$
 $C(i, j, q, q'') = \sum_{\substack{(a,b) \in C_i \times C_j \\ q' \in Q}} \begin{cases} 0 & \text{if } \delta(q, a) \in \mathcal{F} \text{ ou } \delta(q', b) \in \mathcal{F} \\ 0 & \text{if } \delta(q, a) = u_{mf} \text{ and } i - (|u_{mf}| - 1) \neq i_{u_{mf}} \end{cases}$
 $O & \text{if } \delta(q, a) = u_{mf} \text{ and } i - (|u_{mf}| - 1) \neq i_{u_{mf}} \end{cases}$

CFGRNAD tests every $(q, q'') \in Q^2$ every $q' \in Q$ $\rightsquigarrow O(|Q|^3)$



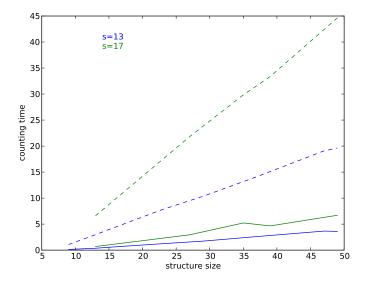
But:

- accessible/co-accessible ?
- non-terminal \rightarrow fixed-length words
- \rightsquigarrow most (q, q', q''), even (q, q''), are *irrelevant*

Optimisation : pre-compute triplets (q, q', q'') such that there is a path $q \rightarrow^* q' \rightarrow^* q''$ in $\mathcal{A}_{\mathcal{F},\mathcal{M}}$.

$$egin{array}{ll} q
ightarrow^{n_1} q'
ightarrow^{n_2} q'' : & & & & \\ \bullet q
ightarrow^{n_1+n_2} q'' \in \delta^*_{\mathcal{F},\mathcal{M}} & & & & & \\ \bullet q
ightarrow^{n_1} q' \in \delta^*_{\mathcal{F},\mathcal{M}} ext{ et } q'
ightarrow^{n_2} q'' \in \delta^*_{\mathcal{F},\mathcal{M}} \end{array}$$

Speed enhancement : preliminary results



Better algorithmic complexity ?

- *A*_{*F*,*M*} optimal *in general*? (minimizing is costly, problems with prog. dyn.)
- folding of *w* into *S* not guaranteed → enforce a *bias* in the random generation
- characterize families of automatons with whom complexity in O(n · |Q|^p), p < 3

Thank you for your attention